OCIT"

Open Communication Interface for Road Traffic Control Systems

Offene Schnittstellen fir die StraRenverkehrstechnik

OCIT-C Center to Center

Transport Protocol

OCIT-C_Protocol V1.2 R1

OCIT Developer Group (ODG)&Partner

OCIT® Registered trade mark of AVT-STOYE, Siemens, Stiihrenberg, SWARCO



OCIT-C Center to Center

Transport Protocol

Document: OCIT-C_Protocol V1.2 R1
Editor: ODG & Partner

Contact: www.ocit.org

Copyright © 2016 ODG. Subject to modifications. Documents with a more recent version or
revision level replace all contents of the previous versions.

OCIT-C_Protocol_V1.2 R1 Page 2 of 40


http://www.ocit.org/

Contents

L INETOQUCTION. ..ttt 6
1.1. Terms and ADDIeVIAtiONS .........coooiiiiiieee e 6
2 PIOUOCON ...t e e e e e 9
2.1. SOAP transfer ProtOCOIS. .........couiiiiiiiiiiiii e 9
2. 1.1 TECHNOIOGY ..o 9
2.1.2.  Protocol reqUIrEMENES .........couuiiiiiii e e e e e e e e 10
N T 1 =T ol ¥ | ] PP 10
2.1.4. Required bandwidth ... 10

2.2. ProtOCOI fUNCHIONS. ...ttt e e e e e e e e 10
2.2.1. Reading data through the client............cccoiiiiiii i, 11
2.2.2.  Sending data to the SErver ... 12

2.3. SeqUENCE CONLIOl ...ccciiiiiiiiiiiiiii 13
2.3.1. Data buffering and position handling ...........cccccooooiiiiiiiin e, 14
2.3.2.  Transaction time t00 lONG ........ccoeeeeiieeeeeee e 14
2.3.3.  ReqUESES T00 0N ..o 15
2.3.4. TOO MANY ChANGES. .. .ot et e e e e e e e e e e 15
2.3.5. Dealing with requests for historical data................cooeviieeiiieeiiiiiiiiieee e, 16
2.3.6. Multi client capability ..........coooeeiii e 16
2.3.7.  ReESYNCHIONISAtION. ... .cii i 17
2.3.8.  Bi-directional COmMmMUNICALION .........ccoeeeeeieeeeeee e 18
2.3.8.1. Bi-directional communication with client and server pair..................... 18
2.3.8.2. Bi-directional communication with regular polling ...........ccccccvvvvvvennnn. 21

2.3.9.  Avoiding sampling delaysS...........oo oo 22

2.4, OSI - LAY OIS et et a e e 23
2.5. Protocol functions in detail.............ooooviiiiiiiii 25
2.5.1.  Standard parameters ..........ooouiuiiiii e 26
25,2, PULeeeeeeeeeeeeee ettt ettt 26

OCIT-C_Protocol_V1.2 R1 Page 3 of 40



A TR R o [ PP 28

254, INQUITEAIL .. 30
255, elBLE ... 32
2.5.6.  getCoNteNtINTO ..ocevviiiii i 33
T /- 1 7 L €T 34
2.6. DAta SITUCIUIMNES.....euieiii et e et e e et e e e e e e e e nnrn e e e e e 35
2.7. Definition Of €ITOICOUES .....ociiiiiiiiiiie et 36
2.8. Suggested appliCAtiONS ..........uuiiiii e 37
2.8.1. Data delivery in the case of multiple recipients.............ccceeeeeeeieeeeeeeeeeeeen, 37
2.8.2.  Configuration INEITACE .......ccceeeeeeeeeeee e 37
2.8.3. Data update between central facilities (unidirectional).............cccccceeeeeeenen. 38
2.8.4. Data update between central facilities (bi-directional)................ccoeeeeeeeenn. 38

OCIT-C_Protocol_V1.2 R1 Page 4 of 40



Document history

Version

Date Distribution List Comment
Issue

V1.1 R1 30.10.2014 PUBLIC Version 1.1 Issue 1

2.2.1: inquireAll status of the objects in
the past (text added)

2.3.5: Text correction

2.3.4: New text version

2.3.5 Text amendment

2.3.8.1 Correction of figures 1 to 17

V12 _R1 16.12.2016 PUBLIC Version 1.2 Issue 1

OCIT-C_Protocol_V1.2 R1 Page 5 of 40



1 Introduction

OCIT-C stands for Open Communication Interface for Road Traffic Control Systems - Center
to Center. OCIT-C covers the communication functions between central traffic control and
traffic guidance systems:

Traffic control centers and traffic management centers (urban, regional, interregional)

Traffic engineer work place with traffic control centers

Parking guidance systems, parking facility systems

Roadworks management systems

Local internet users (city info online)

The definition and maintenance of the OCIT-C interface is carried out by the ODG and their
partners.

OCIT-C provides a standard which perfectly supplements OCIT-O. All requirements for traffic
control up to the overarching traffic management are covered by using OCIT-C and OCIT-O
for communication from control centers to field devices.

OCIT-C is therefore geared towards practical requirements. With its low implementation
costs, its use is also suitable for solutions with small budgets.

The featured properties of OCIT-C are:

¢ An exchange protocol with a simple request-response communication pattern (direct data
request) based on the SOAP standard.

¢ Definition of a comprehensive data model in the process data area containing all subfields
of traffic control and traffic guidance.

e System integration and desired adaptations are governed in advance by project planning.

¢ Conformity tests for the protocol are carried out in a test environment provided at
www.ocit.org. Tests of entire implementations (protocol and data contents) are carried out
on a project-specific basis.

e Expansions to the DATEX Il components are possible based on your project
requirements.

The communication interface should be implemented in the same manner in all central units.
To do this, the SOAP protocol is used as the primary communication interface, through which
all communication is carried out. The specification described here is called the OCIT-C
protocol.

This interface is open and can be used in various systems, primarily in the field of road traffic
control systems. The aim of this document is to describe the OCIT-C protocol and its
application. This document does not aim to describe the data structures of the data to be
transferred. These are described in the document "OCIT-C data".

1.1. Terms and Abbreviations

Term / Abbreviation Description

OCIT-C_Protocol_V1.2 R1 Page 6 of 40


http://www.ocit.org/

AP

User program

Client A program which wishes to use services offered by other (servers) and
actively opens them to do so.

DATEX Il Specifications of Technical Committee 278 of the European Committee
for Standardization (CEN) for the exchange of traffic-related data
between traffic control centers.

FTP File Transfer Protocol, a network protocol for transferring files

htt HyperText Transfer Protocol, a protocol for transferring data over a

P network.

TSS Traffic signal system

Method The algorithms assigned to a class of objects. Also used as a synonym
for function, procedure, command, action.

PT Public Transport

OCIT Open Communication Interface for Road Traffic Control Systems

OCIT-C Open Communication Interface for Road Traffic Control Systems - Center
to Center. OCIT-C covers the communication functions between central
traffic control and traffic guidance systems.

OCIT-O OCIT outstations
Interface between traffic control centres and traffic signal controllers for
controlling and supplying the traffic signal controllers.

OoDG OCIT Developer Group

osl Open Systems Interconnection Reference Model, a communication
model of the International Organization for Standardization (ISO) for
communication protocols in computer networks.

0TS 2 Open Traffic Systems, Version 2

Server A program that offers certain services and passively waits on incoming
calls (from clients) to do so.

SOAP Simple Object Access Protocol, it is a protocol which enables data to be
exchanged between systems. SOAP uses the "Remote Procedure Call",
through which it enables the functions in other computers to be called.
See http://mww.w3.0rg/TR/ISOAP

SSL Secure Socket Layer.

Soap-Server-Interface

Soap and Protocolmanager on the server side

Soap-Client-Interface

Soap and Protocolmanager on the client side

Protocolmanager

Protocol layer used for implementing commands in the buffer

OCIT-C_Protocol_V1.2_R1

Page 7 of 40



http://www.w3.org/TR/SOAP

TLS

Technical delivery terms for roadway stations. The TLS are a standard for
the structure of traffic control systems on major German Federal
highways. Editor: German Federal Highway Research Institute

TCP/IP

Transmission Control Protocol / Internet Protocol, a family of network
protocols for the Internet.

VDV

Verband Deutscher Verkehrsunternehmer (Association of German
Transportation Companies)

WSDL

Web Services Description Language, a platform, programming language
and protocol independent description language for web services for
exchanging messages based on XML.

XML

Extensible Markup Language, a markup language for presenting
structured data in the form of text. XML is used among other things for a
platform and implementation-independent exchange of data between
computer systems. An XML document is made up of text characters, in
the most basic case in ASCII coding, and is therefore machine-readable.
It does not contain binary data. The XML specification is published by the
World Wide Web Consortium (W3C) as a recommendation.

XSD

XML schema, a recommendation of the World Wide Web Consortium
(W3C) for defining structures for XML documents. The structure is
described in the form of an XML document. Furthermore, it supports a
large number of data types. The XSD schema language describes data
types, individual XML schema instances (documents) and groups of such
instances. A specific XML schema is called an XSD (XML Schema
Definition) and the file usually has the ending ".xsd".

OCIT-C_Protocol_V1.2_R1

Page 8 of 40




2 Protocol

All communication via the interface is processed using the SOAP protocol.

This chapter describes the application of the protocol for the OCIT-C interface. This
configuration must be installed in all clients and servers.

The exact description of the underlying protocol of the data model, as well as the basic
description of the attributes an elements is given entirely within the individual schema
definitions in the form of XML schema definitions (XSD). These are both text and machine
readable. The schema definitions have been compiled in English.

2.1 SOAP transfer protocols

This chapter describes the SOAP interface.

2.1.1. Technology

The data to be transferred are coded as XML. This has the following advantages:

¢ Common protocol for all areas,

¢ Independence of the type of data,

¢ platform independent,

e simple to expand.

SOAP is used as the transfer process based on http. SOAP also uses XML to structure its
data.

The protocol contains simple commands such as 'get' or 'delete’.

OCIT-C_Protocol_V1.2 R1 Page 9 of 40



2.1.2. Protocol requirements

e The protocol is a server-client protocol.

o Data are displayed on the output interface as XML.

e Data are accepted at the input interface as XML.

e Commands are embedded in XML.

e Objects are identified by external identifiers.

¢ Itis not possible to request more than one object type at a time (in a "request").

e The protocol inside the server is stateless. The server knows nothing about the client.
2.1.3. Security

The server contains a list of usernames and the associated passwords, as well as the
operations the users are allowed to perform and the client accesses.

2.1.4. Required bandwidth
The required bandwidth depends on the number of clients, the object types and the objects
in the system. Therefore, it is not possible to provide any specifications regarding bandwidth.

A Local Area Network (LAN) between the central applications however will offer sufficient
transfer capacity.

2.2. Protocol functions
The protocol allows data to be read and configured. Furthermore, it is possible to evaluate
objects in terms of their usability and to structure them dynamically while it is running. Each

command consists of a request (Request) and a response (Respond).

In each request, an XML structure is sent from the client to the server. The result is sent back
from the server to the client as a "Resultat" (also called "response structure").

Available methods:

Request Response Function

put putResponse Configuring objects

Request for data modified since the last
get getResponse

request
inquireAll inquireAllResponse Request of all objects of an object type
delete deleteResponse Deletion of dynamic data
getContentinfo getContentinfoResponse | Request for object contents
wait4Get wait4GetResponse Request for data modified since the last

request (such as get), with the difference
that the response is delayed until data
are available.

OCIT-C_Protocol_V1.2 R1 Page 10 of 40



2.2.1. Reading data through the client

All protocol functions for reading data include a parameter (filter), which labels the objects
that should be read.

If the filter is empty, all objects in the associated response are sent back. So that the client is
able to resynchronise in the event of an interruption, the start information of the previous
response of a reading access is included in the transfer.

The server offers all readable data of the available object to its external interface. The
existing object types can be requested by the client using the command 'getContentinfo’.
These can be read by the client using "get" or "inquireAll" (if read access is allowed).

The difference between inquireAll and get is:

¢ -« inquireAll (resynchronisation function) delivers all objects of the requested object type
with the status or content of the object. inquireAll must be used in any case for a
synchronisation (e.g. server or client restart). get (here used as read changes) delivers all
content changes of the requested object type carried out since the last request. This
mechanism is described in detail in chapter 2.3.1, Data buffering and position handling.

The following sequence diagram Figurel shows how it is possible to periodically request
data from the server using the protocol functions 'inquireAll' and "get".

OCIT-C_Protocol_V1.2 R1 Page 11 of 40



Soap- Soap- Data-
Client-I| Server-| Base
Data
|
inquireAll
>
Data
-
inquireAll-
Now the
client knows all objects Response 4%
of the requested object
type get
>
Data
-
getResponse
Now the <
lient knows all changes
since last request Data
get il
o
getResponse Data
Data
get ==
»

Figure 1: Common sequence for reading data from the SOAPserverinterface

2.2.2. Sending data to the server

It is possible to send data from the client to the server. The "put" protocol function is used to
do this. The server's behaviour depends on the object type. In the case of unknown objects
in the "put" command, either the object is generated or a malfunction is returned. To delete

objects, use the "delete” command.

The appropriate data are sent to the server using the "put" command for the configuration of
the interface. The servers accepts them or rejects all non-configurable objects and places

them on the putResultlist.

OCIT-C_Protocol_V1.2_R1

Page 12 of 40



Figure 2: Common sequence for writing or configuring data to the SOAPserverinterface

2.3.

Now the

client knows about
successfull configured
objects and errors

Now the

client knows about
successfull configured
objects and errors

Soap- Soap- Data-
Client-| Server-| Base
put
> Dat
ata
put-
-
Response
put
Data
put-
-
Response

Sequence control

The protocol does not have a connection. For sequence control, it is sufficient to wait for the
response to a request. This is governed by the http protocol. Additional sequence control is
not required. The suitable sequences are described in the following chapters.

OCIT-C_Protocol_V1.2_R1

Page 13 of 40



2.3.1. Data buffering and position handling

= B

inquireAll
Now the @a\a‘ Q0
client knows all data. | _jnquireAllIResponse
Last information from <& dat e
server is at pos=p1 (data, pos=p1)
\J
Client requests data get (pos=p) > 2
starting at pos=p1 7P~
Now th Cal S
, ow the get-Response erver
client knows all change: ,
since (data since last pos =p1, pos=p2) data
last information from server ' buffer
at pos=p1
v
Client requests data get (poe=pZ} > 3
starting at pos=o0 90549 -
\da\a\
~ Nowthe get-Response
client knows all change: ;
since (data since last pos =p3, pos=p3)
last information from server
at pos=p2

Figure 3: Data buffering on the server and position handling on the client

The server stores the data requested by the client from its database in a ring buffer. After an
inquireAll has been carried out, the client knows the last status from the database. Other
than the inquireAll response, the client receives the last position number and shows the
latest information from the server (indicator to the latest received data in the data buffer).
Using this position number, the client generates the next request (get). Through the position
number, the server knows which data must be provided in order to deliver all changes that
have occurred. The response received includes the desired data and a new position number
that will be used for the following request.

If a client wishes to request more than one type of object, it needs to use multiple requests.

Each request sequence must perform its own position handling in order to receive delta
values relating to the object type. This also applies in the case of using different filter lists
and when using parameters with the optional XML element get—data.

2.3.2. Transaction time too long

Normally a response contains the requested data. If the server requires more time than
permitted (> 60 sec), an empty response is returned to the client. The exceeded transaction
time is displayed by an error code. Nevertheless, the server continues to retrieve requested
data from its database (or from the archive). The client repeats its request after a certain
period of time. After this period of time, the server should be able to deliver the data. If the
server is still not able to deliver, an error code is displayed once again.

OCIT-C_Protocol_V1.2 R1 Page 14 of 40



Soap- Soap- Data-
Client-I Server-| Base

inquireAll

o

data access

inquireAllIResponse
(error=too long time)

I data
| access
| requires
g time
s
E data access-
'§' returns data
o -
|
\ inquireAll
>

inquireAllIResponse
(data, pos. number)

Figure 4: Dealing with long transaction times (similar sequence also applies for "get")
2.3.3. Requests too long

The server returns an error code, if the content of a response exceeds a certain threshold.
This may happen, if

. too much historical data is requested (time range too large), or
. too many objects are requested.

The client must narrow its request by reducing the number of objects or the request time
range accordingly.

2.3.4. Too many changes

If too many changes have been made since the last request, the request is satisfied as far as
possible, by returning not all of the objects or not the entire time range.

The incomplete return is signalled by the errorCode (in protocol.xsd) (errorCode:
missingDatasets)

OCIT-C_Protocol_V1.2 R1 Page 15 of 40



2.3.5. Dealing with requests for historical data

The "get" command is used, if access to the historical data is requested.
The "storetime" element is used to define the start time of the saved historical data.
The "endStore" element is used to define the end time of the saved historical data.

The server response contains the status changes (no initial value) from "storetime" to
"endStore", provided that the definition of the request interval is not too wide.

Should the definition of the request interval be too wide, the request is satisfied as far as
possible, by returning not all of the objects or not the entire time range. The incomplete
return is signalled by the errorCode (in protocol.xsd) (errorCode: missingDatasets)

If storetime is the same as endStore, the status at this time is sent. The value then
receives as the time stamp either the original time stamp of the value exactly, should this
not be present, the initial time stamp is not executed (the time stamp in protocol.xsd is an
optional element).

If the initial value cannot be delivered, or its delivery doesn't make any sense (e.g. with the
"operatingMessages" object type), then no value is delivered.

It is recommended:

To select as short a time period as possible

To use filters and with them reduce the quantity of objects requested.

2.3.6. Multi client capability

The server operates without a connection. Due to the position number, it is not necessary to
build up knowledge about the client on the server side.

When implementing OCIT-C, it must be ensured that the libraries used in the lower
communication layers allow multi client access.

OCIT-C_Protocol_V1.2 R1 Page 16 of 40



Client-I-1 Client-I-2

get-Response

Server-| P ™
f
inquireAll
> ~oA)_
_ e v
inquireAll- B,
Response (data, pos=p1)
v
get (pos=p1)
’ = \ -
e o

(data since last pos =p1, pos=p2)

i get-Response

inquireAll
> 203~
inqui @2 Server dat
inquireAll- b erver data
Response (data, pos=p3) buffer
get (pos=p2)
B _oA)_ - |
\da\_a.\)Os
get-Response b
(data since last pos =p2, pos=p4)
\J
get (pos=p3)
> -
\da‘a"’os v

(data since last pos =p3, pos=p5)

Figure 5: Multi client capability

2.3.7. Resynchronisation

Restart of the client

There are various reasons for a resynchronisation:

o The client recognises this and therefore resynchronises using "inquireAll".

o The server is possibly able to detect the restart of the client using a watchdog which

can be optionally implemented.

Restarting the server

o The client possibly detects that the server cannot be reached via "socket timeout".

OCIT-C_Protocol_V1.2_R1

Page 17 of 40



o The server responds to each possible protocol function (inquireAll, get or put), including
lastStart, that displays when the server was last restarted.

o The client must resynchronise using inquireAll, if the lastStart does not differentiate
from previous entries.

Soap- Soap-
Client-| Server-|
get
< get-Response
get
Client rec_:ognises server - Serverrestart
restart with socket error
get

get-Response

The client recognises
server restart with modified
lastStat in get response

Soap::inquireAll
‘inquireAII-Response’

get
et-Response
< g9 P
get
get-Response
Figure 6: Restarting the server
2.3.8. Bi-directional communication

The following applications require bi-directional communication:
e TSS control or sign control:

o Switching command is transferred from the control center to the device server or
switching status is asynchronously transferred from the device server to the control
center

e CCTV

o PTZ (panftil/zoom) command is transferred from the control center to the device server

o - Current status is asynchronously transferred from the device server to the control
center

The following chapters describe possible configurations. As an example, the "Sign control” is
used.

2.3.8.1. Bi-directional communication with client and server pair

Switching a sign (process sequence is successful)

OCIT-C_Protocol_V1.2 R1 Page 18 of 40



Figure 7: Switching a sign (process sequence is successful)

Soap- Soap- Soap- Soap-
Server-I| Client-| Server-| Client-I
c switch command to the pUt (Sign Switch forward $witch fo
inte{face Command) appli¢ation
- IRV S AR ¥ RS-, N} I [ ——— >
Soap::put-
= g
S Result
e
r
v
e change state
to

r o.k.(successful
= | change state . ) . . switch
Al ok put (Sign Switch State-o0.k./content information) command)

-—————— -t - - ——————
p Soap::put-

E

p Result
I

SQ — W0

= D < = DO W

—T T B

OCIT-C_Protocol_V1.2_R1

Page 19 of 40



Switching a sign (process sequence is unsuccessful)

Soap- Soap- Soap- Soap-
Server-| Client-I ] | Server-| Client-|
switch comimand to the ut (Sign Switc forward gwitch to -
[ ] interface Command) appli¢ation
—————————————— > - ————————————— P>
Soap::put- S
Resuit change state |
C fon.o.k(not |1
S accepted g
change state . . switch n
P n.ok. it (Sign Switch State-n.o.k.) command)
- < Soap::put Sl =
: Resi - =
r e
v switch comimand to the : : r
interface agaln (repeat after pUt (Slgn Switch forward gwitch to
e delay mak. 3 times) Command) appligation v
—————————————— - - ———————r—————— P
o Soap::put- ?
3 Result
A =
P I Sequence contintes ! A
P | dependingonthe | P
i I following answeres | P
1 _Of the sign server. 1

Figure 8: Switching a sign (process sequence is unsuccessful)

In the case of a missing response, the switch commands are repeated after a configurable
delay. This applies regardless of where the fault occurs (there is no status transition to the
"busy" or "0.k." status). The repetition is stopped after three unsuccessful attempts. The

current status on the side of the central system then changes to n.o.k.

Status, content and connection monitoring

central system

sign

OCIT-C_Protocol_V1.2_R1

Page 20 of 40



Soap- Soap- Soap- Soap-

Server-| Client-| Server-| Client-|
i change state —
to n.o.k(any
change state . . errer detcted S
n.o.k. put (Sign Switch State-n.o.k.) on sign) >
C—————-— et — - ————— 1
a5 Soap::put- > g
Result
- n
S change state
change state . . to o.k(sign
e ok. gut (Sign Switch State-o.k|) becomes o.k)
e —————-— et — < - e
) Soap::put- - =
Result
e v
r e
= The signserver updates the r
central system periodicly.
A (Lifecycle telegramm). In -
p case of non reachable A
serverTMS the sign falls
P back to default. P
| change state p
change state . . to o.k(sign
o.k. dut (Sign Switch State-o.k|) becomes o.k) ||
j— —————— e - o ————,
Soap::put- -
Result

Figure 9: Switching status

The sign server updates the central system periodically, even if the switching status has not
changed. Subsequently, the central system receives notification:

¢ if a sign, which is connected to the sign server, changes its status
e if a sign changes its content

¢ if the sign server cannot be reached (the max. waiting time is specified by the central
system)

If the central system cannot be reached, the sign server sets the signs to a pre-defined
display status.

2.3.8.2. Bi-directional communication with regular polling

The statuses are evaluated in the same manner as in chapter 2.3.8.1.

OCIT-C_Protocol_V1.2 R1 Page 21 of 40



central system sign

Soap- Soap-
Client- Server-|
S
c switch command to . . forward switch to i
; the interface put (Sign Switch Command) appiication
i Soap::put- o R >9
- o n
s Result 3
e get (Sign Switch State) S
r > e
Y > get-response v
change slate to o.k.(successful
e switch command) v
r get (Sign Switch State) * - ———————— e
A ._cflafgf staetook < get-response > %
p A
p get (Sign Switch State) P
' get-response ™ P
- |

Figure 10: Regular status requests
2.3.9. Avoiding sampling delays

To prevent inadvertently large sampling delays through cyclic requests from the client to the
server, a new function is introduced in the protocol. This function works in accordance with
the following principle:

e Structure like the "get" function
(i.e. same parameters, only different function name)
Name of the function "wait4Get"
e The new function wait4Get operates like the "get" function with the difference, that in the
event there is no data present on the server (i.e. the return list were to be empty), the

response from the wait4Get is delayed until either a timeout occurs or there is data
available on the server.

¢ The client would therefore invoke the wait4Get function once again immediately after
receiving a response, in order to indirectly keep the return channel permanently open.

e To prevent multiple requests within a second, the server can adopt protective measures.
A possible protective measure would be to allow one response per second and to return
the values accumulated in this second in the response.

e The server is able to restrict the number of clients or object types / objects, which are
requested in this manner.

OCIT-C_Protocol_V1.2 R1 Page 22 of 40



e To prevent too many sockets being opened, the wait4Get function enables different object
types to be requested simultaneously. This would be considered accordingly in the data
structures of the function.

The following sequence diagram illustrates the procedure (simplified for the request of an
object type:

Soap- Soap-
Client-I Server-| T
N
inquireAll
>
inquireAllResponse | Jdata, pos=p1)_ |
W— ‘,’ (data, pos=p1)
The client initiates
wait4get without any
delay 1 wa |t4get (pos=p1)
~
The server has no new data Server
(related to p1). Server delays the
answere til data available data
buffer
‘wait4get-Response (data, pos=p2)
> S
,’ (data since last pos =p1, pos=p2)
The client initiates next 3
call of wait4get without g7, pos=pa)_ |
any delay i -
T waitdget (pos=p2) o L et pos=pt)__
waitdget-Response
(data : pos=p3 and p4)
.
N

Figure 11: Communication layers client and server

2.4. OSI - Layers
Server and client have different sections with different functions according to the OSI model.

The lowest protocol layer is the http protocol, which is responsible for transmitting data in the
network.

Above that is the client or server version of the SOAP protocol.

The protocol manager has the task of providing all commands including the required data
buffer for the server functionality.

The application layer establishes the connection to the database.

The following figure describes this layer model.

OCIT-C_Protocol_V1.2 R1 Page 23 of 40



DEE Data/

Application Application
PM-Client Protokoll-
Manager

WebServer

Soap-Client (Soap)

Figure 12: Communication layers client and server

OCIT-C_Protocol_V1.2 R1 Page 24 of 40



2.5. Protocol functions in detail

Available methods:

Protokoll [

==

Generated by XMLSpy

Response of put method

getResponse [+]

—L getContentinfoResponse

Response of getContentInfo

’wait4Get

—| 5 waitdGetResponse

www .altova.com

Figure 13: Available methods

OCIT-C_Protocol_V1.2 R1

Page 25 of 40



2.5.1. Standard parameters

The standard parameters of the methods are:

Input parameters

UserName and UserPasswd authenticate the user UserName and UserPasswd are
transferred as normal text. This authentication should therefore not be used for high levels
of security requirements.

watchdog is a structure used by the client to inform the server when the next call can be
expected. This can be used by the server for timeout monitoring of the client.

storetime indicates the start of the requested or sent data. This method is only used
when accessing data saved historical data.

endStore indicates the end of the requested data. This method is only used when
accessing data saved historical data.

position indicates the position of the indicator in the server buffer.
The position is received using the methods inquireAll and getResponse and used for the
next get request (see chapter 2.3.1, Data buffering and position handling).

filterList is a list of objects which should be read.
These can be used to limit the quantity of data.

Output parameters

lastStart is the time stamp of the last server restart. If the lastStart changes from one
server response to the next, this is a sign that the data must be resynchronised. The client
resynchronises because of this using the inquireAll method.

errorCode is an error code which is generated in the case of faulty commands. In the
event of faulty XML structures, it is not used. In addition, there is the message from the
SOAP protocol (fault).

errorText is a description of the errorCode than can be read by humans.

position is the position of the last data access. It must be used for the subsequent data
access.

datalList is a list including the requested data.

2.5.2. put

The "put" method is used to configure objects. It contains all instances of the data,
which should be configured.

OCIT-C_Protocol_V1.2 R1 Page 26 of 40



:userHame

User identifier; only
characters, nurnbers and _
allowed

Fassword

‘watchdng

Timeout supervision of the
cliant at the serwer side, The

watchdog is used to issue a I
self contral of the client, The
etwer notes a tirneout i the |

CN=

|
Canfiguration methad For ‘

watchdogtirne of client
elapzes. In case of ermpty
watchdog no timeout
supervision is awailable,

data

objectType

A
Objekttype to identify the
type of the required data
(first search key).

(conte of getContentInfo)

List of objects (data), which
should be configured at the

SeFver,
|
putResponse is the response to "put".
It contains all non-configurable data, usually none.
e
putResponseType

last start of the server
(Format:
"1999-05-31T13:20:00.000+
02:00" entspricht

31.05.1999 13:20 MESZ
@— (MEZ=+01:00))

ferrorCode

Emorcode (0:no enor)

putResponse |[|— (% :5;;5,};;{ |
L

Response of put method _T _______
P P plain error text

|
‘ || """"

--1,data

______ 4

ent, which
sible additional

Dummy
indudes pos:
‘ data.

3 I

OCIT-C_Protocol_V1.2_R1 Page 27 of 40



2.5.3. get

The "get" method is used to request data.

In addition to the standard parameters, it has

e either the start or end time, in order to receive all values within this time span

¢ or the position number of the data requested. Normally this is the position number
returned by the last inquireAllResponse or getResponse method.

~userName

1
|
! start date and time (returned
“1  valuesin Result)
i g
1
|

OCIT-C_Protocol_V1.2 R1 Page 28 of 40



getResponse is the response to "get"

getResponseType
lastStart

last start of the server
(Forrnat:

"1999-05-31T 13:20:00.000+
02:00" entspricht
31.05,1999 13:20 MESZ
(MEZ=+01:00])

m

] I
i

Hr e (0o aror)

:errurText

| LerrorCode
| plain eror text

storetime

|
|
|
|
|
|
|
|
|
getResponse F3—H =T iumed by nauieall and I
|
|
|
|
|
|
|
|
|
|

get (Format:

Response of get method | "1999.05-31T13:20:00.000+
02:00" equals 21.05,1999

13:20 MESE

(MEZ=-+01:00).

;pusitiun

| Iz used to identify entres in

| the buffer of the server, WWill
be retumed by

| inquireAsliResponse and
getResponse and must be
l_]i'l.l"_:rl a5 FI-EIF-EIW\Er.EF on

| followwing get-call, IF position
equals 0 the complete buffer

| will be retumed.

adatalist

Read Data

OCIT-C_Protocol_V1.2 R1 Page 29 of 40



2.5.4. inquireAll

Method for requesting all objects of an object type with the latest status or object content.
This method guarantees the client that the response contains all the requested objects.

The inquireAll method only contains standard parameters.

l inquireAliType

.
1=,
’
1
1
1
A

ceccscecccccscccsce e e ==y

LinquireAll = ‘

Read method to get all

objects of one object type

'
'
'
'

-

Luserllame

User identifier; only
characters, nurnbers and _

allowed

client at tha se
The watchde
Issue a &
client, Th
timeout if the watd

of client elapses, Incase of
empty watchdo

timaout

naoqg no

erviston is

available,

—(—-oo—)E}—EobiectType ]

Objekttypes to dentify the

Objectfilter (& empy fist

means on all requsts excep

thiz type, On activate
means a empty listino
object of this type)

includes pozsible additional
data,

OCIT-C_Protocol_V1.2 R1

Page 30 of 40



inquireAllResponse is the response with all requested contents.

inquireAllResponseType

st start of the server

|

|

| =0 e
3:20:00,000+

|

|

|

|

|

errorCode

Envarcode ([0ino aror]

plain enor text

inquireAliResponse E}{{_'“_:E_ returned by inquiresll and

get (Formnat!
1999-05-31

Response of inguiredl 000,000+

SE
(MEZ=-+01:007).

| Iz used ta identify entries in

| the buffer of the sarver, Wil
be returmed by

| inquiredsliResponse and
getResponse and must be
l;li'l.l'":r\ a5 p arameter on

| Falloweing get-call. IF position
equals 0 the complate buffer

| will be returmed.

. datalist

Read Data

OCIT-C_Protocol_V1.2 R1

Page 31 of 40



2.5.5. delete

The "delete" method is used to delete dynamic data (where permitted). Instances of the data
to be deleted must be entered into the filter list.

deleteType

userllame
ser identifier; only

characters, numbers and _
allowed

Passwand
Timeout supervision of the

|

|

|

|

|

|

|

‘ w:Iinﬁath .atithf': serju'errside. jl'ljne
Ho B St o e hem T

‘ y ;

|

|

|

|

|

|

|

|

|

Method ta delete dynamic “\:al doatime r'r|>~‘riw: if the

data .
o 5, In caze of empty

watchdog no timeout
supetvision is available,

El—i

fuhjet:tType

Objekttype to identify the
type of the required data
(First search key),

[contents of getContentInkbo]

 filterList

Cibjecthilter (2 ernpty list
means on all requsts except

&t &LL Objects of this
type. On activate means a
ampty listino object of this
typel

activa

deleteResponse is the response to "delete". It contains the instances of the data, which
cannot be deleted.

deleteResponseType

last start of the server

5-31T12:20:00,000+
entspricht

31.05,1999 13:
(MEZ=+01:00))

Response of delete

Errorcode [0ino ervor)

error Text

E.]

—| deleteBadList

List of not deleted objects

|
|
|
|
|
deleteResponse %(*IIEI— |
|
|
|
|
|

‘ plain arvor taxt

OCIT-C_Protocol_V1.2 R1 Page 32 of 40



2.5.6. getContentinfo

Method for requesting the object contents of the server. The method's parameters are just
the name of the client, the password and optionally the time for the "watchdog".

| getContentinfoType

w1l

| userdame

zer identifiar; onky
characters, nurnbers and _

1"',"!\":"1
getContentinfo [{]—l{—m—jzl— _

Mathod to retieve available |
Password |

contents of the server
,watt:hdug

Tirneout supervisian of the
| client at the server side, The
watchdog iz uzed to issue a
| self control of the client, The
server notes a timeout if the
| watchdogtime of client
] F Eﬂ'lpt':,l'
I watchdog no timeout
supervision is available, |

The response getContentinfoResponse contains a list of available object types with their
access rights and recommended update cycles.

getContentinfoResponseType

—iEIastStart

last start of the serve
(Format:
"1999-05-31T13:20:00.000+
02:00" en

31.05.16 20 MESZ
—E)El— (MEZ=-+01:00))

errorCode

I
I - -
I Errorcode (0:no enor’
I
I

getContentinfoResponse [Tj—

Response of getContentinfo [ | MM \

plain eror text

—E—m—)f]— contentinfoL.ist

List of all available object
ypes

OCIT-C_Protocol_V1.2 R1 Page 33 of 40



2.5.7. wait4Get

Method for requesting the server data. The method's parameters are the same parameters
as a "get", however it enables multiple object types to be requested simultaneously.

userlame

waitdGetType [ - -:'—--—\

Vopmmmmsesemna
+-1,watchdog

B attributes

! maxWaitTime |

|, useriame

N

| filterList

| |
' |
| J

Generated by XMLSpy www .altova.com

OCIT-C_Protocol_V1.2 R1 Page 34 of 40



Wait4GetResponse is the response with the changes since the last request.

R —

| headerResponse (extension

|

|

|
(waiﬂGetResponseType [T']J—

|
| L
| t-aerrorText .
I___'——Z.Z_,-,_Z-‘_—.—J
| waithesponseListiype |
|
|
|
— |
‘ ,posmon |
—@E}—Lwaitﬂesponseust [Tj_@a_ |
1.100 |
a E |
|
|
————————— ]
Generated by XMLSpy www .altova.com

2.6. Data structures

Data structures that are inserted into the protocol, i.e. the methods, put, inquireAll -
response, etc, are defined in separate schema files of the protocol.

OCIT-C_Protocol_V1.2 R1 Page 35 of 40



2.7. Definition of errorCodes

The following errorCodes are defined in protocol.xsd:

errorCode Meaning
0 no error
1 access error
2 buffer overflow
10 requested data unavailable
11 requested data cannot be sent
12 requested data cannot be deleted
13 values cannot be set
14 found empty object type
15 object type not found
16 error writing data
17 error creating data
18 error deleting data
19 missing filter for deletions
20 server shortly unavailable
21 missing parameters to execute the method
22 internal error
23 other registered accessing client
30 one file cannot be accessed
31 error opening a file
32 error reading a file
33 internal error, reading the archive
34 internal error, parsing the archive
35 error, parsing the archive
36 error activating
37 error deactivating
38 error reading data
39 object not found
40 invalid time range.
41 time range complete (no error)
42 missing data sets
43 returned time range incomplete

OCIT-C_Protocol_V1.2_R1

Page 36 of 40



2.8. Suggested applications

This chapter describes how to manage servers and clients in various applications. This are
just recommendations, which may differ on a project-specific basis.

2.8.1. Data delivery in the case of multiple recipients

In cases where there are multiple recipients for the data from the server, which merely
request data and don't require a real-time connection, the architecture described below is
recommended.

e The data source contains the so-called SOAPServerinterface, which contains
functionalities for buffering data.
The data sink contains the so-called SOAPCIlientinterface, which enables access to the
SOAP server (inquireAll and get methods).

This makes it that the client only access the server upon request. Furthermore, the protocol
can be implemented with little effort. In the case of an internet connection, the server is the
data source and the client the web service.

Data further use of
l data

SoapServer-

Interface N SoapClient-

7
\ Interface

Y

Data Source Data Sink =

Figure 14: Data delivery to multiple recipients

2.8.2. Configuration interface

If a system (as a data source) requires a configuration interface on the data sink, the
following architecture is recommended:

e The data source is the client

¢ The data sink is the server

Properties:

e Data transfer only on demand

¢ Real-time configuration, no polling required

¢ Multiple configuration interfaces with standardised communication interface to a data sink
possible.

OCIT-C_Protocol_V1.2 R1 Page 37 of 40



Data further use of
data
SoapClient- .| SoapServer-
Interface ; Interface
/
Data Source - Data Sink

Figure 15: Multiple configuration interfaces

An application for this are subsystems (as the client), which immediately forward their
collected data for example data about traffic faults. This configuration should only be used to
prevent overload situations.

2.8.3. Data update between central facilities (unidirectional)

In this case, the following is recommended:

e Data source is the server

e Data sink is the client

Data further use of
data
SegpaaNer »  SoapClient-
Interface
Interface
CentralUnit as Data Central Unit(s) as
Source Consumer

Figure 16: Configuration when delivering data to the client

Practically, this configuration is the same as for data delivery in the case of multiple
recipients.

2.8.4. Data update between central facilities (bi-directional)

If a bi-directional interface is required, the interface can be realised twice, since the central
system is the client and the server simultaneously.

OCIT-C_Protocol_V1.2 R1 Page 38 of 40



Data

Soap-
Client-
Interface

SoapServer-
Interface

*

Data
Soap-
| " P SoapServer-
» Client-
Interface
Interface

CentralUnit 1

CentralUnit2

Figure 17: Configuration when exchanging data server — server

OCIT-C_Protocol_V1.2_R1

Page 39 of 40



OCIT-C_Protocol V1.2 R1
Copyright © 2016 ODG & Partner




