

OCIT
®

Open Communication Interface for Road Traffic Control Systems

Offene Schnittstellen für die Straßenverkehrstechnik

OCIT-C Center to Center

Transport Protocol

OCIT-C_Protocol_V1.2_R1

OCIT Developer Group (ODG)&Partner

OCIT® Registered trade mark of AVT-STOYE, Siemens, Stührenberg, SWARCO

OCIT-C_Protocol_V1.2_R1 Page 2 of 40

OCIT-C Center to Center

Transport Protocol

Document: OCIT-C_Protocol_V1.2_R1

Editor: ODG & Partner

Contact: www.ocit.org

Copyright © 2016 ODG. Subject to modifications. Documents with a more recent version or
revision level replace all contents of the previous versions.

http://www.ocit.org/

OCIT-C_Protocol_V1.2_R1 Page 3 of 40

Contents

1 Introduction..6

1.1. Terms and Abbreviations ...6

2 Protocol ...9

2.1. SOAP transfer protocols ...9

2.1.1. Technology ...9

2.1.2. Protocol requirements ... 10

2.1.3. Security ... 10

2.1.4. Required bandwidth .. 10

2.2. Protocol functions ... 10

2.2.1. Reading data through the client... 11

2.2.2. Sending data to the server .. 12

2.3. Sequence control ... 13

2.3.1. Data buffering and position handling ... 14

2.3.2. Transaction time too long .. 14

2.3.3. Requests too long ... 15

2.3.4. Too many changes.. 15

2.3.5. Dealing with requests for historical data .. 16

2.3.6. Multi client capability ... 16

2.3.7. Resynchronisation... 17

2.3.8. Bi-directional communication .. 18

2.3.8.1. Bi-directional communication with client and server pair 18

2.3.8.2. Bi-directional communication with regular polling 21

2.3.9. Avoiding sampling delays .. 22

2.4. OSI - Layers ... 23

2.5. Protocol functions in detail.. 25

2.5.1. Standard parameters .. 26

2.5.2. put ... 26

OCIT-C_Protocol_V1.2_R1 Page 4 of 40

2.5.3. get ... 28

2.5.4. inquireAll ... 30

2.5.5. delete .. 32

2.5.6. getContentInfo .. 33

2.5.7. wait4Get .. 34

2.6. Data structures ... 35

2.7. Definition of errorCodes ... 36

2.8. Suggested applications .. 37

2.8.1. Data delivery in the case of multiple recipients .. 37

2.8.2. Configuration interface .. 37

2.8.3. Data update between central facilities (unidirectional) 38

2.8.4. Data update between central facilities (bi-directional) 38

OCIT-C_Protocol_V1.2_R1 Page 5 of 40

Document history

Version
Issue

Date Distribution List Comment

V1.1_R1 30.10.2014 PUBLIC Version 1.1 Issue 1

 2.2.1: inquireAll status of the objects in
the past (text added)

2.3.5: Text correction

2.3.4: New text version

2.3.5 Text amendment

2.3.8.1 Correction of figures 1 to 17

V1.2_R1 16.12.2016 PUBLIC Version 1.2 Issue 1

OCIT-C_Protocol_V1.2_R1 Page 6 of 40

1 Introduction

OCIT-C stands for Open Communication Interface for Road Traffic Control Systems - Center
to Center. OCIT-C covers the communication functions between central traffic control and
traffic guidance systems:

• Traffic control centers and traffic management centers (urban, regional, interregional)

• Traffic engineer work place with traffic control centers

• Parking guidance systems, parking facility systems

• Roadworks management systems

• Local internet users (city info online)

The definition and maintenance of the OCIT-C interface is carried out by the ODG and their
partners.

OCIT-C provides a standard which perfectly supplements OCIT-O. All requirements for traffic
control up to the overarching traffic management are covered by using OCIT-C and OCIT-O
for communication from control centers to field devices.

OCIT-C is therefore geared towards practical requirements. With its low implementation
costs, its use is also suitable for solutions with small budgets.

The featured properties of OCIT-C are:

• An exchange protocol with a simple request-response communication pattern (direct data
request) based on the SOAP standard.

• Definition of a comprehensive data model in the process data area containing all subfields
of traffic control and traffic guidance.

• System integration and desired adaptations are governed in advance by project planning.

• Conformity tests for the protocol are carried out in a test environment provided at
www.ocit.org. Tests of entire implementations (protocol and data contents) are carried out
on a project-specific basis.

• Expansions to the DATEX II components are possible based on your project
requirements.

The communication interface should be implemented in the same manner in all central units.
To do this, the SOAP protocol is used as the primary communication interface, through which
all communication is carried out. The specification described here is called the OCIT-C
protocol.

This interface is open and can be used in various systems, primarily in the field of road traffic
control systems. The aim of this document is to describe the OCIT-C protocol and its
application. This document does not aim to describe the data structures of the data to be
transferred. These are described in the document "OCIT-C data".

1.1. Terms and Abbreviations

Term / Abbreviation Description

http://www.ocit.org/

OCIT-C_Protocol_V1.2_R1 Page 7 of 40

AP User program

Client A program which wishes to use services offered by other (servers) and
actively opens them to do so.

DATEX II Specifications of Technical Committee 278 of the European Committee
for Standardization (CEN) for the exchange of traffic-related data
between traffic control centers.

FTP File Transfer Protocol, a network protocol for transferring files

http
HyperText Transfer Protocol, a protocol for transferring data over a
network.

TSS Traffic signal system

Method The algorithms assigned to a class of objects. Also used as a synonym
for function, procedure, command, action.

PT Public Transport

OCIT Open Communication Interface for Road Traffic Control Systems

OCIT-C Open Communication Interface for Road Traffic Control Systems - Center
to Center. OCIT-C covers the communication functions between central
traffic control and traffic guidance systems.

OCIT-O OCIT outstations
Interface between traffic control centres and traffic signal controllers for
controlling and supplying the traffic signal controllers.

ODG OCIT Developer Group

OSI Open Systems Interconnection Reference Model, a communication
model of the International Organization for Standardization (ISO) for
communication protocols in computer networks.

OTS 2 Open Traffic Systems, Version 2

Server A program that offers certain services and passively waits on incoming
calls (from clients) to do so.

SOAP Simple Object Access Protocol, it is a protocol which enables data to be
exchanged between systems. SOAP uses the "Remote Procedure Call",
through which it enables the functions in other computers to be called.
See http://www.w3.org/TR/SOAP

SSL Secure Socket Layer.

Soap-Server-Interface Soap and Protocolmanager on the server side

Soap-Client-Interface Soap and Protocolmanager on the client side

Protocolmanager Protocol layer used for implementing commands in the buffer

http://www.w3.org/TR/SOAP

OCIT-C_Protocol_V1.2_R1 Page 8 of 40

TLS Technical delivery terms for roadway stations. The TLS are a standard for
the structure of traffic control systems on major German Federal
highways. Editor: German Federal Highway Research Institute

TCP / IP Transmission Control Protocol / Internet Protocol, a family of network
protocols for the Internet.

VDV
Verband Deutscher Verkehrsunternehmer (Association of German
Transportation Companies)

WSDL Web Services Description Language, a platform, programming language
and protocol independent description language for web services for
exchanging messages based on XML.

XML Extensible Markup Language, a markup language for presenting
structured data in the form of text. XML is used among other things for a
platform and implementation-independent exchange of data between
computer systems. An XML document is made up of text characters, in
the most basic case in ASCII coding, and is therefore machine-readable.
It does not contain binary data. The XML specification is published by the
World Wide Web Consortium (W3C) as a recommendation.

XSD XML schema, a recommendation of the World Wide Web Consortium
(W3C) for defining structures for XML documents. The structure is
described in the form of an XML document. Furthermore, it supports a
large number of data types. The XSD schema language describes data
types, individual XML schema instances (documents) and groups of such
instances. A specific XML schema is called an XSD (XML Schema
Definition) and the file usually has the ending ".xsd".

OCIT-C_Protocol_V1.2_R1 Page 9 of 40

2 Protocol

All communication via the interface is processed using the SOAP protocol.

This chapter describes the application of the protocol for the OCIT-C interface. This
configuration must be installed in all clients and servers.

The exact description of the underlying protocol of the data model, as well as the basic
description of the attributes an elements is given entirely within the individual schema
definitions in the form of XML schema definitions (XSD). These are both text and machine
readable. The schema definitions have been compiled in English.

2.1. SOAP transfer protocols

This chapter describes the SOAP interface.

2.1.1. Technology

The data to be transferred are coded as XML. This has the following advantages:

• Common protocol for all areas,

• Independence of the type of data,

• platform independent,

• simple to expand.

SOAP is used as the transfer process based on http. SOAP also uses XML to structure its
data.

The protocol contains simple commands such as 'get' or 'delete'.

OCIT-C_Protocol_V1.2_R1 Page 10 of 40

2.1.2. Protocol requirements

• The protocol is a server-client protocol.

• Data are displayed on the output interface as XML.

• Data are accepted at the input interface as XML.

• Commands are embedded in XML.

• Objects are identified by external identifiers.

• It is not possible to request more than one object type at a time (in a "request").

• The protocol inside the server is stateless. The server knows nothing about the client.

2.1.3. Security

The server contains a list of usernames and the associated passwords, as well as the
operations the users are allowed to perform and the client accesses.

2.1.4. Required bandwidth

The required bandwidth depends on the number of clients, the object types and the objects
in the system. Therefore, it is not possible to provide any specifications regarding bandwidth.
A Local Area Network (LAN) between the central applications however will offer sufficient
transfer capacity.

2.2. Protocol functions

The protocol allows data to be read and configured. Furthermore, it is possible to evaluate
objects in terms of their usability and to structure them dynamically while it is running. Each
command consists of a request (Request) and a response (Respond).

In each request, an XML structure is sent from the client to the server. The result is sent back
from the server to the client as a "Resultat" (also called "response structure").

Available methods:

Request Response Function

put putResponse Configuring objects

get getResponse
Request for data modified since the last
request

inquireAll inquireAllResponse Request of all objects of an object type

delete deleteResponse Deletion of dynamic data

getContentInfo getContentInfoResponse Request for object contents

wait4Get wait4GetResponse Request for data modified since the last
request (such as get), with the difference
that the response is delayed until data
are available.

OCIT-C_Protocol_V1.2_R1 Page 11 of 40

2.2.1. Reading data through the client

All protocol functions for reading data include a parameter (filter), which labels the objects
that should be read.

If the filter is empty, all objects in the associated response are sent back. So that the client is
able to resynchronise in the event of an interruption, the start information of the previous
response of a reading access is included in the transfer.

The server offers all readable data of the available object to its external interface. The
existing object types can be requested by the client using the command 'getContentInfo'.
These can be read by the client using "get" or "inquireAll" (if read access is allowed).

The difference between inquireAll and get is:

• • inquireAll (resynchronisation function) delivers all objects of the requested object type
with the status or content of the object. inquireAll must be used in any case for a
synchronisation (e.g. server or client restart). get (here used as read changes) delivers all
content changes of the requested object type carried out since the last request. This
mechanism is described in detail in chapter 2.3.1, Data buffering and position handling.

The following sequence diagram Figure1 shows how it is possible to periodically request
data from the server using the protocol functions 'inquireAll' and "get".

OCIT-C_Protocol_V1.2_R1 Page 12 of 40

Figure 1: Common sequence for reading data from the SOAPserverinterface

2.2.2. Sending data to the server

It is possible to send data from the client to the server. The "put" protocol function is used to
do this. The server's behaviour depends on the object type. In the case of unknown objects
in the "put" command, either the object is generated or a malfunction is returned. To delete
objects, use the "delete" command.

The appropriate data are sent to the server using the "put" command for the configuration of
the interface. The servers accepts them or rejects all non-configurable objects and places
them on the putResultlist.

OCIT-C_Protocol_V1.2_R1 Page 13 of 40

Figure 2: Common sequence for writing or configuring data to the SOAPserverlnterface

2.3. Sequence control

The protocol does not have a connection. For sequence control, it is sufficient to wait for the
response to a request. This is governed by the http protocol. Additional sequence control is
not required. The suitable sequences are described in the following chapters.

OCIT-C_Protocol_V1.2_R1 Page 14 of 40

2.3.1. Data buffering and position handling

Figure 3: Data buffering on the server and position handling on the client

The server stores the data requested by the client from its database in a ring buffer. After an
inquireAll has been carried out, the client knows the last status from the database. Other
than the inquireAll response, the client receives the last position number and shows the
latest information from the server (indicator to the latest received data in the data buffer).
Using this position number, the client generates the next request (get). Through the position
number, the server knows which data must be provided in order to deliver all changes that
have occurred. The response received includes the desired data and a new position number
that will be used for the following request.

If a client wishes to request more than one type of object, it needs to use multiple requests.

Each request sequence must perform its own position handling in order to receive delta
values relating to the object type. This also applies in the case of using different filter lists
and when using parameters with the optional XML element get→data.

2.3.2. Transaction time too long

Normally a response contains the requested data. If the server requires more time than
permitted (> 60 sec), an empty response is returned to the client. The exceeded transaction
time is displayed by an error code. Nevertheless, the server continues to retrieve requested
data from its database (or from the archive). The client repeats its request after a certain
period of time. After this period of time, the server should be able to deliver the data. If the
server is still not able to deliver, an error code is displayed once again.

OCIT-C_Protocol_V1.2_R1 Page 15 of 40

Figure 4: Dealing with long transaction times (similar sequence also applies for "get")

2.3.3. Requests too long

The server returns an error code, if the content of a response exceeds a certain threshold.
This may happen, if

• too much historical data is requested (time range too large), or

• too many objects are requested.

The client must narrow its request by reducing the number of objects or the request time
range accordingly.

2.3.4. Too many changes

If too many changes have been made since the last request, the request is satisfied as far as
possible, by returning not all of the objects or not the entire time range.

The incomplete return is signalled by the errorCode (in protocol.xsd) (errorCode:
missingDatasets)

OCIT-C_Protocol_V1.2_R1 Page 16 of 40

2.3.5. Dealing with requests for historical data

• The "get" command is used, if access to the historical data is requested.

• The "storetime" element is used to define the start time of the saved historical data.

• The "endStore" element is used to define the end time of the saved historical data.

• The server response contains the status changes (no initial value) from "storetime" to
"endStore", provided that the definition of the request interval is not too wide.

• Should the definition of the request interval be too wide, the request is satisfied as far as
possible, by returning not all of the objects or not the entire time range. The incomplete
return is signalled by the errorCode (in protocol.xsd) (errorCode: missingDatasets)

• If storetime is the same as endStore, the status at this time is sent. The value then
receives as the time stamp either the original time stamp of the value exactly, should this
not be present, the initial time stamp is not executed (the time stamp in protocol.xsd is an
optional element).
If the initial value cannot be delivered, or its delivery doesn't make any sense (e.g. with the
"operatingMessages" object type), then no value is delivered.

It is recommended:

• To select as short a time period as possible

• To use filters and with them reduce the quantity of objects requested.

2.3.6. Multi client capability

The server operates without a connection. Due to the position number, it is not necessary to
build up knowledge about the client on the server side.

When implementing OCIT-C, it must be ensured that the libraries used in the lower
communication layers allow multi client access.

OCIT-C_Protocol_V1.2_R1 Page 17 of 40

Figure 5: Multi client capability

2.3.7. Resynchronisation

There are various reasons for a resynchronisation:

• Restart of the client

○ The client recognises this and therefore resynchronises using "inquireAll".

○ The server is possibly able to detect the restart of the client using a watchdog which
can be optionally implemented.

• Restarting the server

○ The client possibly detects that the server cannot be reached via "socket timeout".

OCIT-C_Protocol_V1.2_R1 Page 18 of 40

○ The server responds to each possible protocol function (inquireAll, get or put), including
lastStart, that displays when the server was last restarted.

○ The client must resynchronise using inquireAll, if the lastStart does not differentiate
from previous entries.

Figure 6: Restarting the server

2.3.8. Bi-directional communication

The following applications require bi-directional communication:

• TSS control or sign control:

○ Switching command is transferred from the control center to the device server or
switching status is asynchronously transferred from the device server to the control
center

• CCTV

○ PTZ (pan/til/zoom) command is transferred from the control center to the device server

○ - Current status is asynchronously transferred from the device server to the control
center

The following chapters describe possible configurations. As an example, the "Sign control" is
used.

2.3.8.1. Bi-directional communication with client and server pair

Switching a sign (process sequence is successful)

OCIT-C_Protocol_V1.2_R1 Page 19 of 40

Figure 7: Switching a sign (process sequence is successful)

OCIT-C_Protocol_V1.2_R1 Page 20 of 40

Switching a sign (process sequence is unsuccessful)

Figure 8: Switching a sign (process sequence is unsuccessful)

In the case of a missing response, the switch commands are repeated after a configurable
delay. This applies regardless of where the fault occurs (there is no status transition to the
"busy" or "o.k." status). The repetition is stopped after three unsuccessful attempts. The
current status on the side of the central system then changes to n.o.k.

Status, content and connection monitoring

central system sign

OCIT-C_Protocol_V1.2_R1 Page 21 of 40

Figure 9: Switching status

The sign server updates the central system periodically, even if the switching status has not
changed. Subsequently, the central system receives notification:

• if a sign, which is connected to the sign server, changes its status

• if a sign changes its content

• if the sign server cannot be reached (the max. waiting time is specified by the central
system)

If the central system cannot be reached, the sign server sets the signs to a pre-defined
display status.

2.3.8.2. Bi-directional communication with regular polling

The statuses are evaluated in the same manner as in chapter 2.3.8.1.

OCIT-C_Protocol_V1.2_R1 Page 22 of 40

central system sign

Figure 10: Regular status requests

2.3.9. Avoiding sampling delays

To prevent inadvertently large sampling delays through cyclic requests from the client to the
server, a new function is introduced in the protocol. This function works in accordance with
the following principle:

• Structure like the "get" function

(i.e. same parameters, only different function name)

Name of the function "wait4Get"

• The new function wait4Get operates like the "get" function with the difference, that in the
event there is no data present on the server (i.e. the return list were to be empty), the
response from the wait4Get is delayed until either a timeout occurs or there is data
available on the server.

• The client would therefore invoke the wait4Get function once again immediately after
receiving a response, in order to indirectly keep the return channel permanently open.

• To prevent multiple requests within a second, the server can adopt protective measures.
A possible protective measure would be to allow one response per second and to return
the values accumulated in this second in the response.

• The server is able to restrict the number of clients or object types / objects, which are
requested in this manner.

OCIT-C_Protocol_V1.2_R1 Page 23 of 40

• To prevent too many sockets being opened, the wait4Get function enables different object
types to be requested simultaneously. This would be considered accordingly in the data
structures of the function.

The following sequence diagram illustrates the procedure (simplified for the request of an
object type:

Figure 11: Communication layers client and server

2.4. OSI - Layers

Server and client have different sections with different functions according to the OSI model.

The lowest protocol layer is the http protocol, which is responsible for transmitting data in the
network.

Above that is the client or server version of the SOAP protocol.

The protocol manager has the task of providing all commands including the required data
buffer for the server functionality.

The application layer establishes the connection to the database.

The following figure describes this layer model.

OCIT-C_Protocol_V1.2_R1 Page 24 of 40

Figure 12: Communication layers client and server

OCIT-C_Protocol_V1.2_R1 Page 25 of 40

2.5. Protocol functions in detail

Available methods:

Figure 13: Available methods

OCIT-C_Protocol_V1.2_R1 Page 26 of 40

2.5.1. Standard parameters

The standard parameters of the methods are:

Input parameters

• UserName and UserPasswd authenticate the user UserName and UserPasswd are
transferred as normal text. This authentication should therefore not be used for high levels
of security requirements.

• watchdog is a structure used by the client to inform the server when the next call can be
expected. This can be used by the server for timeout monitoring of the client.

• storetime indicates the start of the requested or sent data. This method is only used
when accessing data saved historical data.

• endStore indicates the end of the requested data. This method is only used when
accessing data saved historical data.

• position indicates the position of the indicator in the server buffer.
The position is received using the methods inquireAll and getResponse and used for the
next get request (see chapter 2.3.1, Data buffering and position handling).

• filterList is a list of objects which should be read.
These can be used to limit the quantity of data.

Output parameters

• lastStart is the time stamp of the last server restart. If the lastStart changes from one
server response to the next, this is a sign that the data must be resynchronised. The client
resynchronises because of this using the inquireAll method.

• errorCode is an error code which is generated in the case of faulty commands. In the
event of faulty XML structures, it is not used. In addition, there is the message from the
SOAP protocol (fault).

• errorText is a description of the errorCode than can be read by humans.

• position is the position of the last data access. It must be used for the subsequent data
access.

• dataList is a list including the requested data.

2.5.2. put

The "put" method is used to configure objects. It contains all instances of the data,
which should be configured.

OCIT-C_Protocol_V1.2_R1 Page 27 of 40

putResponse is the response to "put".

It contains all non-configurable data, usually none.

OCIT-C_Protocol_V1.2_R1 Page 28 of 40

2.5.3. get

The "get" method is used to request data.

In addition to the standard parameters, it has

• either the start or end time, in order to receive all values within this time span

• or the position number of the data requested. Normally this is the position number
returned by the last inquireAllResponse or getResponse method.

OCIT-C_Protocol_V1.2_R1 Page 29 of 40

getResponse is the response to "get"

OCIT-C_Protocol_V1.2_R1 Page 30 of 40

2.5.4. inquireAll

Method for requesting all objects of an object type with the latest status or object content.
This method guarantees the client that the response contains all the requested objects.

The inquireAll method only contains standard parameters.

OCIT-C_Protocol_V1.2_R1 Page 31 of 40

inquireAllResponse is the response with all requested contents.

OCIT-C_Protocol_V1.2_R1 Page 32 of 40

2.5.5. delete

The "delete" method is used to delete dynamic data (where permitted). Instances of the data
to be deleted must be entered into the filter list.

deleteResponse is the response to "delete". It contains the instances of the data, which
cannot be deleted.

OCIT-C_Protocol_V1.2_R1 Page 33 of 40

2.5.6. getContentInfo

Method for requesting the object contents of the server. The method's parameters are just
the name of the client, the password and optionally the time for the "watchdog".

The response getContentInfoResponse contains a list of available object types with their
access rights and recommended update cycles.

OCIT-C_Protocol_V1.2_R1 Page 34 of 40

2.5.7. wait4Get

Method for requesting the server data. The method's parameters are the same parameters
as a "get", however it enables multiple object types to be requested simultaneously.

OCIT-C_Protocol_V1.2_R1 Page 35 of 40

Wait4GetResponse is the response with the changes since the last request.

2.6. Data structures

Data structures that are inserted into the protocol, i.e. the methods, put, inquireAll -
response, etc, are defined in separate schema files of the protocol.

OCIT-C_Protocol_V1.2_R1 Page 36 of 40

2.7. Definition of errorCodes

The following errorCodes are defined in protocol.xsd:

errorCode Meaning
0 no error

1 access error

2 buffer overflow

10 requested data unavailable

11 requested data cannot be sent

12 requested data cannot be deleted

13 values cannot be set

14 found empty object type

15 object type not found

16 error writing data

17 error creating data

18 error deleting data

19 missing filter for deletions

20 server shortly unavailable

21 missing parameters to execute the method

22 internal error

23 other registered accessing client

30 one file cannot be accessed

31 error opening a file

32 error reading a file

33 internal error, reading the archive

34 internal error, parsing the archive

35 error, parsing the archive

36 error activating

37 error deactivating

38 error reading data

39 object not found

40 invalid time range.

41 time range complete (no error)

42 missing data sets

43 returned time range incomplete

OCIT-C_Protocol_V1.2_R1 Page 37 of 40

2.8. Suggested applications

This chapter describes how to manage servers and clients in various applications. This are
just recommendations, which may differ on a project-specific basis.

2.8.1. Data delivery in the case of multiple recipients

In cases where there are multiple recipients for the data from the server, which merely
request data and don't require a real-time connection, the architecture described below is
recommended.

• The data source contains the so-called SOAPServerInterface, which contains
functionalities for buffering data.
The data sink contains the so-called SOAPClientInterface, which enables access to the
SOAP server (inquireAll and get methods).

This makes it that the client only access the server upon request. Furthermore, the protocol
can be implemented with little effort. In the case of an internet connection, the server is the
data source and the client the web service.

Figure 14: Data delivery to multiple recipients

2.8.2. Configuration interface

If a system (as a data source) requires a configuration interface on the data sink, the
following architecture is recommended:

• The data source is the client

• The data sink is the server

Properties:

• Data transfer only on demand

• Real-time configuration, no polling required

• Multiple configuration interfaces with standardised communication interface to a data sink
possible.

OCIT-C_Protocol_V1.2_R1 Page 38 of 40

Figure 15: Multiple configuration interfaces

An application for this are subsystems (as the client), which immediately forward their
collected data for example data about traffic faults. This configuration should only be used to
prevent overload situations.

2.8.3. Data update between central facilities (unidirectional)

In this case, the following is recommended:

• Data source is the server

• Data sink is the client

Figure 16: Configuration when delivering data to the client

Practically, this configuration is the same as for data delivery in the case of multiple
recipients.

2.8.4. Data update between central facilities (bi-directional)

If a bi-directional interface is required, the interface can be realised twice, since the central
system is the client and the server simultaneously.

OCIT-C_Protocol_V1.2_R1 Page 39 of 40

Figure 17: Configuration when exchanging data server – server

OCIT-C_Protocol_V1.2_R1

Copyright © 2016 ODG & Partner

