

OCIT Developer Group (ODG)&Partner

OCIT® Registered trade mark of AVT-STOYE, Siemens, Stührenberg, SWARCO

Open Communication Interface for Road Traffic Control Systems

Offene Schnittstellen für die Straßenverkehrstechnik

OCIT-C Center to Center

Transport log

OCIT-C_Protocol_V2.0_R1_D1

OCIT-C_Protocol_V2.0_R1_D1 Page 2 of 41

OCIT-C Center to Center

Transport log

Document: OCIT-C_Protokoll_V2.0_R1_D1

Issued by: ODG & Partner

Contact: www.ocit.org

Copyright © 2018 ODG. Subject to modifications. Documents with a more recent version or
revision level replace all contents of the previous versions.

../../../../../../AppData/Local/Microsoft/Windows/Workshops/13.Workshop_Juni_08/Vorbereitung/Original/www.ocit.org

OCIT-C_Protocol_V2.0_R1_D1 Page 3 of 41

Contents

1 Introduction ... 6

2 Protocol ... 8

2.1 SOAP transmission protocol .. 8

2.1.1 Technology ... 8

2.1.2 Requirements for the protocol ... 8

2.1.3 Security ... 9

2.1.4 Required bandwidth .. 9

2.2 Protocol functions .. 9

2.2.1 Reading data with the client .. 9

2.2.2 Sending data to the server ... 10

2.3 Sequence control ... 11

2.3.1 Data buffering and position handling ... 12

2.3.2 Excessively long transaction time ... 12

2.3.3 Excessively long queries .. 13

2.3.4 Too many changes ... 13

2.3.5 Handling queries of historical data ... 13

2.3.6 Multi-client capability ... 14

2.3.7 Resynchronizing .. 15

2.3.8 Bidirectional communication .. 16

2.3.8.1 Bidirectional communication with client and server pair 17

2.3.8.2 Bidirectional communication with regular status inquiry (polling)19

2.3.9 Avoiding sampling delays .. 20

2.4 OSI layers ... 21

2.5 Protocol functions in detail ... 23

2.5.1 Standard parameters .. 24

2.5.2 put .. 24

OCIT-C_Protocol_V2.0_R1_D1 Page 4 of 41

2.5.3 get .. 25

2.6 Data structures ... 33

2.8 Recommended use ... 35

2.8.1 Data supply with multiple subscribers .. 35

2.8.2 Configuration interface ... 35

2.8.3 Data update between central equipment (unidirectional) 36

2.8.4 Data update between central equipment (bidirectional) 36

OCIT-C_Protocol_V2.0_R1_D1 Page 5 of 41

Document history

Version
State

Date Distribution
List

Comments

V1.1_R1 30.10.2014 PUBLIC Version 1.1 Issue 1

V2.0_R1_D1 2016-04-29 ODG internal 2.3.3: Text correction

2.3.4: New

 2016-09-21 2.2.1: inquireAll Status of the objects
in the past (text added)

 2016-09-29 2.2.1 inquireAll, text correction

2.3.5 timestamp, text changed

2.3.8.1 Images 7, 8, 9 corrected

2.5.1 Writing fault corrections

V2.0_A01 2018-05-31 PUBLIC For OCIT-C V2.0 ODG Homepage

OCIT-C_Protocol_V2.0_R1_D1 Page 6 of 41

1 Introduction

OCIT-C stands for Open Communication Interface for Road Traffic Control Systems -
Center to Center. OCIT-C covers the functions for communicating between the cen-
tral traffic control and traffic guidance systems:

• Traffic control centers and traffic management centers (urban, regional, interre-
gional)

• Traffic engineer work place with traffic control centers

• Parking guidance systems, parking facility systems

• Roadworks management systems

• Local internet users (city information online)

The definition and maintenance of the OCIT-C interface is carried out by the ODG
and their partners .

OCIT-C is a standard that supplements OCIT-O perfectly. Using OCIT-C and OCIT-O
for the communication from central systems to field devices covers all requirements
from traffic control through to primary traffic management.

OCIT-C is therefore geared towards practical requirements. With its low implementa-
tion costs, its use is also suitable for solutions with small budgets.

The characteristic properties of OCIT-C are:

• Exchange protocol with a simple request-response communication pattern (direct
querying of data) based on the SOAP standard.

• Definition of a comprehensive data model in the process data area containing all
partial sections of the traffic control and traffic guidance.

• System integration and desired adaptations are governed in advance by project
planning.

• Conformity tests for the protocol are carried out in a test environment provided at
www.ocit.org. Tests of entire implementations (protocol and data contents) are
carried out on a project-specific basis.

• Expansions to the DATEX II components are possible based on your project re-
quirements.

The communication interface should be implemented the same way in all central
units. For this the SOAP protocol is used as the higher-level communication inter-
face, via which all communication takes place. The version described here is desig-
nated as the OCIT-C protocol.

This interface is open and can be used in various systems, predominantly in the road
traffic technology sector. The aim of this document is to describe the OCIT-C protocol

OCIT-C_Protocol_V2.0_R1_D1 Page 7 of 41

and how its used. The aim of this document is not to describe the data structures of
the data to be transmitted. These are described in the document "OCIT-C data".

OCIT-C_Protocol_V2.0_R1_D1 Page 8 of 41

2 Protocol

All communication via the interface is processed using the SOAP protocol.

This section describes the use of the protocol for the OCIT-C interface. This configu-
ration must be installed on all clients and servers.

The exact description of the data model at the root of this protocol, as well as the ele-
mentary description of the attributes and elements takes place completely within the
individual schema definitions in the form of XML schema definitions (XSD). These
can be machine-processed and readable as text. The schema definitions were writ-
ten up in English and will not be translated.

2.1 SOAP transmission protocol

This chapter describes the SOAP interface.

2.1.1 Technology

The data to be transferred are encoded as XML. This has the following advantages:

• usual log for all areas,

• independence from type of data,

• platform-independent,

• easy to upgrade.

SOAP based on http is used as the transmission method. SOAP also uses XML to
structure its data.

The protocol includes simple commands like "get" and "delete".

2.1.2 Requirements for the protocol

• The protocol is a server-client protocol.

• Data is presented as XML at the output interface.

• Data is accepted as XML at the input interface.

• Commands are embedded in XML.

• Objects are identified by external identifiers.

• Different object types must not be requested at the same time (in a request).

• The protocol has no status within the server. The server does not know any-
thing about the client.

OCIT-C_Protocol_V2.0_R1_D1 Page 9 of 41

2.1.3 Security

The server contains a list of user names and the passwords associated with them as
well as the operations and access to clients permitted to the user.

2.1.4 Required bandwidth

The required bandwidth depends on the number of clients, the object types and ob-
jects in the system. Therefore, no statements can be made about bandwidth here. A
local area network (LAN) between the central applications will provide sufficient
transmission capacity.

2.2 Protocol functions

The protocol allows the reading and configuration of data. Moreover, it is possible to
evaluate objects with regard to usability and structure them dynamically during
runtime. Every command consists of a "request" and a "response".

With a request, an XML structure is sent from the client to the server. The "result"
(also known as the "response structure") will be sent back from the server to the cli-
ent.

Available methods:

Request Response Function

put putResponse Configure objects

get getResponse Query modified data since the last
query

inquireAll inquireAllResponse Query all objects of an object type

delete deleteResponse Delete dynamic data

getContentInfo getContentInfo-
Response

Query object contents

wait4Get wait4GetResponse Query modified data since the last
query (like "get") with the difference
that the response is delayed until data
are available.

2.2.1 Reading data with the client

All protocol functions for reading data contain a parameter (filter) that marks the ob-
jects that should be read.

OCIT-C_Protocol_V2.0_R1_D1 Page 10 of 41

If the filter is empty, all objects are sent back in the corresponding response. So that
the client can re-synchronize in the event of an interruption, the starting information
from the previous response of a read operation are transmitted too.

The server provides all readable data from the available objects at its external inter-
face. The available object types can be queried by the client with the command
getContentInfo. These can be read by the client with "get" or "inquireAll" (if read ac-
cess is allowed).

The difference between inquireAll and get is:

• inquireAll (re-synchronization function) delivers all the objects of the queried ob-
ject type with their last status and the content of the objects. inquireAll must be
used for any synchronization (e.g. server or client restart).

• get (used here to read changes) delivers all the changes made to the content of
the queried object type since the last query. This mechanism is described in de-
tail in section 2.3.1, data buffering and positions handling.

The following flow chart, figure 1, shows how data are periodically requested from the
server using the protocol functions "inquireAll" and "get".

Figure 1: Usual order in which data are read by the SOAPserverInterface

2.2.2 Sending data to the server

It is possible to send data to the server. The protocol function "put" is used for this.
The behavior of the server depends on the object type. In case of an unknown object
in the "put" command, either the object is created or a fault is sent back. To delete
objects, the command "delete" can be used.

OCIT-C_Protocol_V2.0_R1_D1 Page 11 of 41

Relevant data are sent to the server with "put" to configure the interface. The server
accepts them or rejects all non-configurable objects and lists them in the putResult-
list.

Figure 2: Usual order in which data are written or configured on the SOAPserverInterface

2.3 Sequence control

The protocol is connectionless. For sequence control it is enough to wait for the re-
sponse to a query. This is governed by the http protocol. Additional sequence control
is not necessary. Suitable sequences are described in the sections below.

OCIT-C_Protocol_V2.0_R1_D1 Page 12 of 41

2.3.1 Data buffering and position handling

Figure 3: Data buffering on the server and position handling on the client

The server stores the data requested by the client from the server's database into a
ring buffer. After carrying out an inquireAll, the client knows the last status of the da-
tabase. Besides the inquireAll response, the client also receives the last position
number and displays the last information from the server (pointer to the last received
data in the data buffer). Using this position number, the client generates the next re-
quest (get). With the position number, the server knows which data must be made
available to deliver all changes that came up. A received response includes the de-
sired data and a new position number, which is used for the following query.

If a client wants to query more than one object type, multiple queries must be used.

Each query line must carry out its own position handling to receive delta values re-
garding the object type. This also applies to the use of different filter lists and the use
of parameters with the optional XML element "get→data".

2.3.2 Excessively long transaction time

Normally, a response contains the data requested. If the server needs more time
than permitted (more than 60s), an empty response is sent back to the client. An

OCIT-C_Protocol_V2.0_R1_D1 Page 13 of 41

error code will show that transaction time has been exceeded. Nevertheless, the
server continues to get other requested data from its database (or from the archive).
The client repeats its query after a certain amount of time. After this time, the server
should be able to deliver the data. If the server still cannot deliver, an error code with
be displayed again.

Figure 4: Handling long transition times (similar order also applies to "get")

2.3.3 Excessively long queries

The server returns an error code if the content of a response exceeds a certain
threshold. This can happen if

• too many historical data are requested (time range too large), or

• too many objects are requested.

The client must accordingly reduce its request by decreasing the number of objects
or the query timeframe.

2.3.4 Too many changes

If too many changes have been made since the last query, the query will be satisfied
to the extent possible by either returning not all the objects or not the entire
timeframe.

The incomplete return will be indicated by the errorCode (in the protocol.xsd, error-
Code: missingDatasets)

2.3.5 Handling queries of historical data

• The command "get" is used if requesting access to the historical data.

OCIT-C_Protocol_V2.0_R1_D1 Page 14 of 41

• The element "storetime" is used to define the start time for the saved historical
data.

• The element "endStore" is used to define the end time for the saved historical
data.

• The response from the server contains the status changes (no initial values) from
"storetime" to "endStore" as long as not too long a query interval was defined.

• If too long a query interval was defined, the query will be satisfied to the extent
possible by either returning not all the objects or not the entire timeframe. The in-
complete return will be indicated by the errorCode (in the protocol.xsd, errorCode:
missingDatasets)

• If "storetime" is the same as "endStore", the status at this time is sent. The value
in this case contains, in the form of a timestamp, either exactly the original
timestamp of the value or, if this is not available, the initial timestamp will not be
listed (timestamp is an optional element in protocol.xsd). If the initial value cannot
be returned or returning it makes no sense (e.g. for object type "operatingMes-
sages"), then no value is returned.

Recommended:

• select as short a range of time as possible

• use filters and thereby reduce the amount of objects to be queried.

2.3.6 Multi-client capability

The server is connectionless. Due to the position number, it is not necessary to build
up knowledge about the client.

In implementing OCIT-C it must be ensured that the libraries used allow multiple-cli-
ent access for lower-layer communication.

OCIT-C_Protocol_V2.0_R1_D1 Page 15 of 41

Figure 5: Multi-client capability

2.3.7 Resynchronizing

There are various reasons for resynchronization:

• Restarting the client

o The client recognizes this and therefore resynchronizes with "inquireAll".

o The server may identify the client restart using a watchdog that can optionally
be put in place.

• Restarting the server

o The client may identify that the server is not reachable via "socket timeout".

o The server reacts to any possible protocol function (inquireAll, get or put), in-
cluding "lastStart", which displays when the server was started up.

OCIT-C_Protocol_V2.0_R1_D1 Page 16 of 41

o The client must resynchronize with "inquireAll" if "lastStart" is different from the
previous one.

Figure 6: Server restart

2.3.8 Bidirectional communication

The following cases require bidirectional communication:

• TSS control or sign control:

o Switching command is transmitted from control center to controller server

o Switching state is transmitted asynchronously from controller server to
control center

• CCTV

o PTZ (pan/tilt/zoom) command is transmitted from control center to con-
troller server

o - Current state is transmitted asynchronously from controller server to
control center

The following sections describe possible configurations. "Sign control" is used as an
example.

OCIT-C_Protocol_V2.0_R1_D1 Page 17 of 41

2.3.8.1 Bidirectional communication with client and server pair

Switching a sign (process order in case of proper functioning)

Figure 7: Switching a sign (process order in case of proper functioning)

OCIT-C_Protocol_V2.0_R1_D1 Page 18 of 41

Switching a sign (process order in case of faults)

Figure 8: Switching a sign (process order in case of faults)

In case of a missing response, the switching commands are repeated after a configu-
rable delay. This applies regardless of where the fault arises (no status transition oc-
curs to status "busy" or "ok"). Repeating is stopped after three unsuccessful tries.
Then, the current status on the side of the central system changes to "nok".

OCIT-C_Protocol_V2.0_R1_D1 Page 19 of 41

Status, content and connection monitoring

Figure 9: Switching state

The sign server updates the central system periodically even if the switching state
does not change. As a result, the central system receives notifications:

• if a sign connected to the sign server changes its status

• if a sign changes its content

• if the sign server is unreachable (the max. wait time is specified by the central
system)

If the central system is unreachable, the sign server sets the signs to a predefined
display status.

2.3.8.2 Bidirectional communication with regular status inquiry (polling)

The evaluation of states takes place as described in section 2.3.8.1.

OCIT-C_Protocol_V2.0_R1_D1 Page 20 of 41

Figure 10: Polling

2.3.9 Avoiding sampling delays

To avoid undesirably long sampling delays due to cyclical queries from the client to
the server, a new function is introduced in the protocol. This function works according
to the following principle:

• Structure like function "get"
(i.e. same parameters, just different function name)

Name of the function "wait4Get"

• The new function "wait4Get" works like the function "get" with the difference that
in case of no data present on the server (i.e. the return list is empty), the re-
sponse from "wait4Get" is delayed until either a timeout occurs or data are
available on the server.

• The client would, in this case, call the "wait4Get" function again immediately af-
ter receiving a response in order to indirectly keep the return channel perma-
nently open.

• To avoid multiple queries within one second, the server can take protective
measures. A potential protective measure would be to permit only one response
per second and return the values in the response collected in this second.

OCIT-C_Protocol_V2.0_R1_D1 Page 21 of 41

• The server can restrict the number of clients or object types / objects that can
be queried this way.

• To avoid too many open sockets, the function "wait4Get" makes it possible to
query various object types at the same time. This was accordingly taken into
consideration in the data structures of the function.

The following sequence diagram illustrates the process (simplified for the query of an
object type:

Figure 11: Communication layers - client and server

2.4 OSI layers

The server and client have layers subdivided according to the OSI model into differ-
ent sections with different functions.

The lowest protocol layer is the http protocol, which is responsible for data transfer in
the network.

Above that is the SOAP protocol in the form of a client or a server.

OCIT-C_Protocol_V2.0_R1_D1 Page 22 of 41

The protocol manager has the task of providing all commands including the required
data buffers for the functioning of the server.

The application layer represents the connection to the database.

The following figure shows the layer model.

Figure 12: Communication layers - client and server

OCIT-C_Protocol_V2.0_R1_D1 Page 23 of 41

2.5 Protocol functions in detail

Available methods:

Figure 13: Available methods

OCIT-C_Protocol_V2.0_R1_D1 Page 24 of 41

2.5.1 Standard parameters

The standard parameters of the methods are:

Input parameters

• UserName and UserPasswd authenticate the user
UserName and UserPasswd are transmitted as normal text. This authentication
should therefore not be used for high security requirements.

• watchdog is a structure with which the client informs the server when the next
call can be expected. This can be used by the server for monitoring the client's
time (timeout).

• storetime identifies the start of the requested or sent data. This method is only
used for access to saved historical data.

• endStore identifies the end of the requested data. This method is only used for
access to saved historical data.

• position identifies the position of a pointer in the server's buffer.
The position is received using the method inquireAll or getResponse and used
for the next "get" request (see chapter 2.3.1, Data buffering and position han-
dling).

• filterList is a list of objects that should be read
This makes it possible to reduce the amount of data.

Output parameters

• lastStart is the timestamp of the last server start-up. If "lastStart" changes from
one response to the next from the server, this is a sign that the data must be re-
synchronized. The client thus resynchronizes with the method inquireAll.

• errorCode is an error code generated in case of incorrect commands. It is not
used for improper XML structures. For this there is a message from the SOAP
protocol (fault).

• errorTxt is a description of the errorCode that is readable to humans.

• position is the position of last data access. It must be used for subsequent data
access.

• dataList is a list with the data requested.

2.5.2 put

The method "put" is used to configure objects. It contains all the instances of the data
that should be configured.

OCIT-C_Protocol_V2.0_R1_D1 Page 25 of 41

"putResponse" is the response to "put".

It contains all the non-configurable data, usually none.

2.5.3 get

This method is used to query data.

OCIT-C_Protocol_V2.0_R1_D1 Page 26 of 41

In addition to the standard parameter

• it has either start and end time to receive all the values within this time range

• or the position number of the data to be queried. Normally, this is the position
number that was returned by the last method "inquireAllResponse" or
"getResponse".

OCIT-C_Protocol_V2.0_R1_D1 Page 27 of 41

"getResponse" is the response to "get"

OCIT-C_Protocol_V2.0_R1_D1 Page 28 of 41

2.5.4 inquireAll

Method for querying all the data of an object type with the last status / the content of
the object. This method guarantees to the client that all queried objects are included
in the response.

The method "InquireAll" contains only one standard parameter.

OCIT-C_Protocol_V2.0_R1_D1 Page 29 of 41

"inquireAllResponse" is the response with all the requested content.

OCIT-C_Protocol_V2.0_R1_D1 Page 30 of 41

2.5.5 delete

The method "delete" is used to delete dynamic data (for which this is permitted). In-
stances of the data to be deleted must be entered in the filter list.

"deleteResponse" is the response to "delete". It contains the instances of the data
that could not be deleted.

OCIT-C_Protocol_V2.0_R1_D1 Page 31 of 41

2.5.6 getContentInfo

Method for querying the server's object contents. This method's parameters are the
name of the client, the password and optionally the time for the watchdog.

The response "getContentInfoResponse" contains a list of the available object types
with their access permissions and recommended update cycles.

OCIT-C_Protocol_V2.0_R1_D1 Page 32 of 41

2.5.7 wait4Get

Method for querying data from the server. This method's parameters are the same
parameters as "get", but it makes it possible to query multiple object types at once.

OCIT-C_Protocol_V2.0_R1_D1 Page 33 of 41

"Wait4GetResponse" is the response with the changes since the last query.

2.6 Data structures

Data structures added to the protocol, e.g. the methods "put", "inquireAllResponse",
etc., are defined in separate schema files for the protocol.

OCIT-C_Protocol_V2.0_R1_D1 Page 34 of 41

2.7 Definition ErrorCodes

The following errorCodes are defined in protocol.xsd:

errorCode Meaning

0 no error

1 access error

2 buffer overflow

10 requested data unavailable

11 requested data cannot be sent

12 requested data cannot be deleted

13 values cannot be set

14 found empty object type

15 object type not found

16 error writing data

17 error creating data

18 error deleting data

19 missing filter for deletions

20 server shortly unavailable

21 missing parameters to execute the method

22 internal error

23 other registered accessing client

30 one file cannot be accessed

31 error opening a file

32 error reading a file

33 internal error, reading the archive

34 internal error, parsing the archive

35 error, parsing the archive

36 error activating

37 error deactivating

38 error reading data

39 object not found

40 invalid time range.

41 time range complete (no error)

42 missing data sets

43 returned time range incomplete

OCIT-C_Protocol_V2.0_R1_D1 Page 35 of 41

2.8 Recommended use

This section describes how the server and client can be handled in various cases.
These are only recommendations from which project-specific deviations can be
made.

2.8.1 Data supply with multiple subscribers

In cases in which there are multiple subscribers to the server's data that occasionally
request data and do not need a real-time connection, the architecture described in
the following is recommended.

• The data source contains the SOAPServerInterface, which has functions for data
buffering.
The data sink contains the SOAPClientInterface, which enables access to the
SOAP server (methods inquireAll and get).

This way the client can only access the server on request. Moreover, the protocol
can be implemented with little effort. In the case of an internet connection, the data
source is the server and an internet utility is the client.

Figure 14: Data supply with multiple subscribers

2.8.2 Configuration interface

If a system (data source) needs a configuration interface to the data sink, the follow-
ing architecture is recommended:

• The data source is the client

• The data sink is the server

Properties:

• Data transfer only on request

• Real-time configuration, no polling required

OCIT-C_Protocol_V2.0_R1_D1 Page 36 of 41

• Multiple configuration interfaces possible with standard communication interface
to a data sink.

Figure 15: Multiple configuration interfaces

A case for this would be subsystems (client) that forward the data they collect, e.g.
data on traffic problems. This configuration should only be used to avoid overload sit-
uations.

2.8.3 Data update between central equipment (unidirectional)

In this case, it is recommended that:

• The data source is the server

• The data sink is the client

Figure 16: Configuration for data supply to the client

This is practically the same configuration as for data supply with multiple subscribers.

2.8.4 Data update between central equipment (bidirectional)

If a bidirectional interface is needed, the interface can be doubled because the cen-
tral equipment is client and server at the same time.

OCIT-C_Protocol_V2.0_R1_D1 Page 37 of 41

Figure 17: Configuration for data exchange: Server <-> Server

OCIT-C_Protocol_V2.0_R1_D1 Page 38 of 41

List of figures

Abbildung 1: Übliche Reihenfolge zum Lesen von Daten vom SOAPserverInterface10

Abbildung 2: Übliche Reihenfolge zum Schreiben oder Konfigurieren von Daten zum
SOAPserverInterface ...11

Abbildung 3: Datenpufferung am Server und Positionsbehandlung am Client12

Abbildung 4: Handhabung langer Transaktionszeiten (ähnliche Reihenfolge gilt auch für
„get“) ..13

Abbildung 5: Multi Client Fähigkeit ...15

Abbildung 6: Neustart des Servers ...16

Abbildung 7: Schalten eines Schildes (Ablaufreihenfolge im Gutfall)17

Abbildung 8: Schalten eines Schildes (Ablaufreihenfolge im Fehlerfall)18

Abbildung 9: Schaltzustand ..19

Abbildung 10: Regelmäßige Zustandsabfrage ..20

Abbildung 11: Kommunikationschichten Client und Server ...21

Abbildung 12: Kommunikationschichten Client und Server ...22

Abbildung 13: Verfügbare Methoden ..23

Abbildung 14: Datenlieferung an mehrere Abnehmer ...35

Abbildung 15: Mehrere Konfigurations-Schnittstellen ...36

Abbildung 16: Konfiguration bei Datenlieferung an Client ...36

Abbildung 17: Konfiguration bei Datenaustausch Server <-> Server37

OCIT-C_Protocol_V2.0_R1_D1 Page 39 of 41

Terms and abbreviations

Term/abbreviation Description

AP User program

Client A program which wishes to use services offered by other (servers) and
actively opens them to do so.

DATEX II Specifications of Technical Committee 278 of the European Committee
for Standardization (CEN) for the exchange of traffic-related data be-
tween traffic control centers.

FTP File Transfer Protocol, a network protocol for transferring files

http HyperText Transfer Protocol, a protocol for transferring data over a net-
work.

TSL Traffic signal light system

Method The algorithms assigned to a class of objects. Also used as a synonym
for function, procedure, command, action.

PT Public Transport

OCIT Open Communication Interface for Road Traffic Control Systems.

OCIT-C Open Communication Interface for Road Traffic Control Systems - Center
to Center. OCIT-C covers the functions for communicating between the
central traffic control and traffic guidance systems.

OCIT-O OCIT Outstations
Interface between traffic control centres and traffic signal controllers for
controlling and supplying the traffic signal controllers.

ODG OCIT Developer Group

OSI Open Systems Interconnection Reference Model, a communication
model of the International Organization for Standardization (ISO) for com-
munication protocols in computer networks.

OTS 2 Open Traffic Systems, Version 2

Server A program that offers certain services and passively waits on incoming
calls (from clients) to do so.

SOAP Simple Object Access Protocol, it is a protocol which enables data to be
exchanged between systems. SOAP uses the "Remote Procedure Call",
through which it enables the functions in other computers to be called.
See http://www.w3.org/TR/SOAP

SSL Secure Socket Layer.

OCIT-C_Protocol_V2.0_R1_D1 Page 40 of 41

Soap-Server-Interface Soap and Protocolmanager on the server side

Soap-Client-Interface Soap and Protocolmanager on the client side

Protocolmanager Protocol layer used for implementing commands in the buffer

TLS Technical delivery terms for roadway stations. The TLS are a standard
for the structure of traffic control systems on major German Federal high-
ways. Issued by: German Federal Highway Research Institute

TCP / IP Transmission Control Protocol / Internet Protocol, a family of network pro-
tocols for the Internet.

VDV Association of German Transportation Companies

WSDL Web Services Description Language, a platform / programme language
and protocol-independent description language for network services (web
services) for exchanging messages based on XML.

XML Extensible Markup Language, a markup language for presenting struc-
tured data in the form of text. XML is used among other things for a plat-
form and implementation-independent exchange of data between com-
puter systems. An XML document is made up of text characters, in the
most basic case in ASCII coding, and is therefore machine-readable. It
does not contain binary data. The XML specification is published by the
World Wide Web Consortium (W3C) as a recommendation.

XSD XML schema, a recommendation of the World Wide Web Consortium
(W3C) for defining structures for XML documents. The structure is de-
scribed in the form of an XML document. Furthermore, it supports a large
number of data types. The XSD schema language describes data types,
individual XML schema instances (documents) and groups of such in-
stances. A specific XML schema is called an XSD (XML Schema Defin-
tion) and the file usually has the ending ".xsd".

Further explanations about the technical terms and abbreviations used in this document can
be found in “OCIT – O Glossary V3.0”.

OCIT-C_Protocol_V2.0_R1_D1

Copyright © 2018 ODG & Partner

