OCIT

Open Communication Interface for Road Traffic Control Systems

Offene Schnittstellen fur die StraRenverkehrstechnik

OCIT-C Center to Center

Transport log

OCIT-C_Protocol V2.0 R1 D1

OCIT Developer Group (ODG)&Partner

OCIT® Registered trade mark of AVT-STOYE, Siemens, Stuhrenberg, SWARCO

OCIT-C Center to Center

Transport log

Document: OCIT-C_Protokoll_V2.0_R1 D1
Issued by: ODG & Partner

Contact: www.ocit.org

Copyright © 2018 ODG. Subject to modifications. Documents with a more recent version or
revision level replace all contents of the previous versions.

OCIT-C_Protocol V2.0 R1 D1 Page 2 of 41

../../../../../../AppData/Local/Microsoft/Windows/Workshops/13.Workshop_Juni_08/Vorbereitung/Original/www.ocit.org

Contents

1 INEFOTUCTION ...ttt b bbbt 6
2 PIOUOCON ...t 8
2.1 SOAP transSmMiSSION ProtOCOL.......cciiiuiiieiiiiesiece e 8
2.1.1 TECHNOIOQYeiiiiiiieiiiiee e 8

2.1.2 Requirements for the protoCol...........ccccceiieiiiiiiiieii e 8

2.1.3 SEBCUILY c.eeeteeie ettt ettt et et e et e et e s ae e teera e reeaeaneenreas 9

2.1.4 Required bandwidth.............cooiiiiiiii e 9

2.2 ProtoCOl fUNCHIONSciiiiiiiiicee ettt 9
2.2.1 Reading data with the clientc.cccoiiiieii i, 9

2.2.2 Sending data to the SEIrVEr.........ccccceiieii i, 10

2.3 SEQUENCE CONTIOL.....iiiiiiiiiiiiee e 11
2.3.1 Data buffering and position handlingccccceeevieiiiieiicccc e, 12

2.3.2 Excessively long transaction time............cccoeveviiieieese e 12

2.3.3 EXxcessively loNg QUENIES.........ccccueiiiiiiiie e 13

2.3.4 T0OO MANY ChANGESccooiiiiiiiiiieee s 13

2.3.5 Handling queries of historical dataccccoeveveiiieiiiieiccec e, 13

2.3.6 Multi-client capability...........cccccoviiiiiiiieec e 14

2.3.7 RESYNCNIONIZINGcoviiiiiiiiiiiiieee s 15

2.3.8 Bidirectional cCommUNICALION.........cooiiiiiiiiiiri e 16

2.3.8.1 Bidirectional communication with client and server pair 17

2.3.8.2 Bidirectional communication with regular status inquiry (polling)19

2.3.9 Avoiding sampling delaysccccooiiiiiiiiiii 20
2.4 OSI LAYEIS ..ttt be e 21
2.5 Protocol functions in detail ... 23
2.5.1 Standard parametersS ... 24
733 O SO 24

OCIT-C_Protocol V2.0 R1 D1 Page 3 of 41

2.6 DALa SIUCIUIES.oiiiiiieiiiieiee et nne s 33
2.8 RECOMMENUEA USE ..ot 35
2.8.1 Data supply with multiple subscribers..........ccccoviieiiiiiiicceee e, 35
2.8.2 Configuration iNterfaceccevviieiiieii e 35
2.8.3 Data update between central equipment (unidirectional) 36
2.8.4 Data update between central equipment (bidirectional) 36

OCIT-C_Protocol V2.0 R1 D1 Page 4 of 41

Document history

Version Date Distribution Comments
State List
V11l R1 30.10.2014 |PUBLIC Version 1.1 Issue 1
V2.0 R1 D1 |2016-04-29 |ODG internal 2.3.3: Text correction
2.3.4: New
2016-09-21 2.2.1: inquireAll Status of the objects
in the past (text added)
2016-09-29 2.2.1 inquireAll, text correction
2.3.5 timestamp, text changed
2.3.8.1 Images 7, 8, 9 corrected
2.5.1 Writing fault corrections
V2.0_A01 2018-05-31 |PUBLIC For OCIT-C V2.0 ODG Homepage

OCIT-C_Protocol_V2.0_R1_D1

Page 5 of 41

1 Introduction

OCIT-C stands for Open Communication Interface for Road Traffic Control Systems -
Center to Center. OCIT-C covers the functions for communicating between the cen-
tral traffic control and traffic guidance systems:

e Traffic control centers and traffic management centers (urban, regional, interre-
gional)

o Traffic engineer work place with traffic control centers
e Parking guidance systems, parking facility systems

e Roadworks management systems

e Local internet users (city information online)

The definition and maintenance of the OCIT-C interface is carried out by the ODG
and their partners .

OCIT-C is a standard that supplements OCIT-O perfectly. Using OCIT-C and OCIT-O
for the communication from central systems to field devices covers all requirements
from traffic control through to primary traffic management.

OCIT-C is therefore geared towards practical requirements. With its low implementa-
tion costs, its use is also suitable for solutions with small budgets.

The characteristic properties of OCIT-C are:

e Exchange protocol with a simple request-response communication pattern (direct
querying of data) based on the SOAP standard.

e Definition of a comprehensive data model in the process data area containing all
partial sections of the traffic control and traffic guidance.

e System integration and desired adaptations are governed in advance by project
planning.

e Conformity tests for the protocol are carried out in a test environment provided at
www.ocit.org. Tests of entire implementations (protocol and data contents) are
carried out on a project-specific basis.

e Expansions to the DATEX Il components are possible based on your project re-
guirements.

The communication interface should be implemented the same way in all central
units. For this the SOAP protocol is used as the higher-level communication inter-
face, via which all communication takes place. The version described here is desig-
nated as the OCIT-C protocol.

This interface is open and can be used in various systems, predominantly in the road
traffic technology sector. The aim of this document is to describe the OCIT-C protocol

OCIT-C_Protocol V2.0 R1 D1 Page 6 of 41

and how its used. The aim of this document is not to describe the data structures of
the data to be transmitted. These are described in the document "OCIT-C data".

OCIT-C_Protocol V2.0 R1 D1 Page 7 of 41

2 Protocol

All communication via the interface is processed using the SOAP protocol.

This section describes the use of the protocol for the OCIT-C interface. This configu-
ration must be installed on all clients and servers.

The exact description of the data model at the root of this protocol, as well as the ele-
mentary description of the attributes and elements takes place completely within the
individual schema definitions in the form of XML schema definitions (XSD). These
can be machine-processed and readable as text. The schema definitions were writ-
ten up in English and will not be translated.

2.1 SOAP transmission protocol

This chapter describes the SOAP interface.

2.1.1 Technology

The data to be transferred are encoded as XML. This has the following advantages:
e usual log for all areas,
e independence from type of data,
e platform-independent,
e easy to upgrade.

SOAP based on http is used as the transmission method. SOAP also uses XML to
structure its data.

The protocol includes simple commands like "get" and "delete".

2.1.2 Requirements for the protocol

e The protocol is a server-client protocol.

e Data is presented as XML at the output interface.

o Data is accepted as XML at the input interface.

e Commands are embedded in XML.

e Objects are identified by external identifiers.

o Different object types must not be requested at the same time (in a request).

e The protocol has no status within the server. The server does not know any-
thing about the client.

OCIT-C_Protocol V2.0 R1 D1 Page 8 of 41

2.1.3 Security

The server contains a list of user names and the passwords associated with them as
well as the operations and access to clients permitted to the user.

2.1.4 Required bandwidth

The required bandwidth depends on the number of clients, the object types and ob-
jects in the system. Therefore, no statements can be made about bandwidth here. A
local area network (LAN) between the central applications will provide sufficient
transmission capacity.

2.2 Protocol functions

The protocol allows the reading and configuration of data. Moreover, it is possible to
evaluate objects with regard to usability and structure them dynamically during
runtime. Every command consists of a "request” and a "response”.

With a request, an XML structure is sent from the client to the server. The "result"
(also known as the "response structure™) will be sent back from the server to the cli-
ent.

Available methods:

Request Response Function

put putResponse Configure objects

get getResponse Query modified data since the last
query

inquireAll inquireAllResponse Query all objects of an object type

delete deleteResponse Delete dynamic data

getContentlnfo getContentInfo- Query object contents

Response

wait4Get wait4GetResponse Query modified data since the last
query (like "get") with the difference
that the response is delayed until data
are available.

2.2.1 Reading data with the client

All protocol functions for reading data contain a parameter (filter) that marks the ob-
jects that should be read.

OCIT-C_Protocol V2.0 R1 D1 Page 9 of 41

If the filter is empty, all objects are sent back in the corresponding response. So that
the client can re-synchronize in the event of an interruption, the starting information
from the previous response of a read operation are transmitted too.

The server provides all readable data from the available objects at its external inter-
face. The available object types can be queried by the client with the command
getContentinfo. These can be read by the client with "get" or "inquireAll" (if read ac-
cess is allowed).

The difference between inquireAll and get is:

e inquireAll (re-synchronization function) delivers all the objects of the queried ob-
ject type with their last status and the content of the objects. inquireAll must be
used for any synchronization (e.g. server or client restart).

e get (used here to read changes) delivers all the changes made to the content of
the queried object type since the last query. This mechanism is described in de-
tail in section 2.3.1, data buffering and positions handling.

The following flow chart, figure 1, shows how data are periodically requested from the
server using the protocol functions "inquireAll" and "get".

Soap- Soap- Data-
Client-| Server-| Base

Data

inquireAll

Data

inquireAll-
Now the Response

client knows all objects P Data

of the requested object

type get

Data

getResponse

Now the
lient knows all changes
since last request Data

get

getResponse Data

Data

get

Figure 1: Usual order in which data are read by the SOAPserverinterface

2.2.2 Sending data to the server

It is possible to send data to the server. The protocol function "put” is used for this.
The behavior of the server depends on the object type. In case of an unknown object
in the "put" command, either the object is created or a fault is sent back. To delete
objects, the command "delete” can be used.

OCIT-C_Protocol V2.0 R1 D1 Page 10 of 41

Relevant data are sent to the server with "put” to configure the interface. The server
accepts them or rejects all non-configurable objects and lists them in the putResult-
list.

Soap- Soap- Data-
Client-I| Server-| Base
put
= Dat
ata
put-
-
Now the Response

client knows about
successfull configured
objects and errors

put
i D
ata
put-
Response

Now the
client knows about
successfull configured
objects and errors

Figure 2: Usual order in which data are written or configured on the SOAPserverinterface

2.3 Sequence control

The protocol is connectionless. For sequence control it is enough to wait for the re-
sponse to a query. This is governed by the http protocol. Additional sequence control
is not necessary. Suitable sequences are described in the sections below.

OCIT-C_Protocol V2.0 R1 D1 Page 11 of 41

2.3.1 Data buffering and position handling

Soap- Soap-
Client-l Server-| ¥ i
_'/
inquireAll
> 549\\)5
Now the \da\a' o0
dlient knows all data. | —jnquireAllResponse
Last information from [<& dait 5
server is at pos=p1 (data, pos=p1)
v
Client requests data get \pos=pi) > 2
starting at pos=p1 905’9 =
\63\'3
' Now the get-Response Server
client knows all changeg<& :
since (data since last pos =p1, pos=p2) data
last information from server : buffer
at pos=p1
\J
Client requests data get (pos=pa] >)
starting at pos=o 905’9 a5
Sl
~ Nowthe get-Response
client knows all changes<#
since (data since last pos =p3, pos=p3)
last information from server
at pos=p2
= ey
v

Figure 3: Data buffering on the server and position handling on the client

The server stores the data requested by the client from the server's database into a
ring buffer. After carrying out an inquireAll, the client knows the last status of the da-
tabase. Besides the inquireAll response, the client also receives the last position
number and displays the last information from the server (pointer to the last received
data in the data buffer). Using this position number, the client generates the next re-
guest (get). With the position number, the server knows which data must be made
available to deliver all changes that came up. A received response includes the de-
sired data and a new position number, which is used for the following query.

If a client wants to query more than one object type, multiple queries must be used.
Each query line must carry out its own position handling to receive delta values re-

garding the object type. This also applies to the use of different filter lists and the use
of parameters with the optional XML element "get—>data".

2.3.2 Excessively long transaction time

Normally, a response contains the data requested. If the server needs more time
than permitted (more than 60s), an empty response is sent back to the client. An

OCIT-C_Protocol V2.0 R1 D1 Page 12 of 41

error code will show that transaction time has been exceeded. Nevertheless, the
server continues to get other requested data from its database (or from the archive).
The client repeats its query after a certain amount of time. After this time, the server
should be able to deliver the data. If the server still cannot deliver, an error code with
be displayed again.

Soap- Soap- Data-
Client-I Server-| Base
inquireAll
=
data access
: y — B~
inquireAllIResponse
(error=too long time)
| data
| access
1 requires
g' time
=
“3, data acct
§' returns data
(0]
I
inquireAll
B
inquireAllIResponse
(data, pos. number)

Figure 4: Handling long transition times (similar order also applies to "get")

2.3.3 Excessively long queries

The server returns an error code if the content of a response exceeds a certain
threshold. This can happen if

e too many historical data are requested (time range too large), or
e to0 many objects are requested.

The client must accordingly reduce its request by decreasing the number of objects
or the query timeframe.

2.3.4 Too many changes

If too many changes have been made since the last query, the query will be satisfied
to the extent possible by either returning not all the objects or not the entire
timeframe.

The incomplete return will be indicated by the errorCode (in the protocol.xsd, error-
Code: missingDatasets)

2.3.5 Handling queries of historical data

e The command "get" is used if requesting access to the historical data.

OCIT-C_Protocol V2.0 R1 D1 Page 13 of 41

e The element "storetime" is used to define the start time for the saved historical
data.

e The element "endStore" is used to define the end time for the saved historical
data.

e The response from the server contains the status changes (no initial values) from
"storetime” to "endStore" as long as not too long a query interval was defined.

e Iftoo long a query interval was defined, the query will be satisfied to the extent
possible by either returning not all the objects or not the entire timeframe. The in-
complete return will be indicated by the errorCode (in the protocol.xsd, errorCode:
missingDatasets)

o If "storetime" is the same as "endStore", the status at this time is sent. The value
in this case contains, in the form of a timestamp, either exactly the original
timestamp of the value or, if this is not available, the initial timestamp will not be
listed (timestamp is an optional element in protocol.xsd). If the initial value cannot
be returned or returning it makes no sense (e.g. for object type "operatingMes-
sages"), then no value is returned.

Recommended:
e select as short a range of time as possible

e use filters and thereby reduce the amount of objects to be queried.

2.3.6 Multi-client capability

The server is connectionless. Due to the position number, it is not necessary to build
up knowledge about the client.

In implementing OCIT-C it must be ensured that the libraries used allow multiple-cli-
ent access for lower-layer communication.

OCIT-C_Protocol V2.0 R1 D1 Page 14 of 41

Soap- Soap- Soap-
Client-1-1 Client-1-2 Server-| R

inquireAll

inquireAll- 2
Response (data, pos=p1)

v
get (pos=p1)

Y
[]
"1\"\)
7
\
\
\

get-Response

(data since last pos =p1, pos=p2)

inquireAll
> _od)_

- @a\a“"’s . S st
_inquireAll- 3 erver data
" Response (data, pos=p3) 3 buffer

get (pos=p2)
: > b
e i
get-Response -
& (data since last pos =p2, pos=p4)
v
get (pos=p3)
> ~09)_ -
e =

_ get-Response
= (data since last pos =p3, pos=p5)

Figure 5: Multi-client capability

2.3.7 Resynchronizing
There are various reasons for resynchronization:
e Restarting the client
o The client recognizes this and therefore resynchronizes with "inquireAll".

o The server may identify the client restart using a watchdog that can optionally
be put in place.

e Restarting the server
o The client may identify that the server is not reachable via "socket timeout".

o The server reacts to any possible protocol function (inquireAll, get or put), in-
cluding "lastStart", which displays when the server was started up.

OCIT-C_Protocol V2.0 R1 D1 Page 15 of 41

o The client must resynchronize with "inquireAll" if "lastStart" is different from the
previous one.

Soap- Soap-
Client-| Server-|
get
» get-Response
get
i i ——— b
Client recognises server
restart with socket error Serverrestart
get
. get-Response

The client recognises
server restart with modified
lastStat in get response

Soap:inquireAll
<inquireAII—Response’

get

» get-Response

get
get-Response

Figure 6: Server restart

2.3.8 Bidirectional communication
The following cases require bidirectional communication:
e TSS control or sign control:
o Switching command is transmitted from control center to controller server

o Switching state is transmitted asynchronously from controller server to
control center

e CCTV

o PTZ (panftilt/zoom) command is transmitted from control center to con-
troller server

o - Current state is transmitted asynchronously from controller server to
control center

The following sections describe possible configurations. "Sign control” is used as an
example.

OCIT-C_Protocol V2.0 R1 D1 Page 16 of 41

2.3.8.1 Bidirectional communication with client and server pair

Switching a sign (process order in case of proper functioning)

“u 0

= D < = D N 1

—T T P

Soap- Soap- Soap- Soap-
Server-| Client-| Server-| Client-|
. put (Sign Switch . S
switch command to the forward switch to i
intefface Command) application

—————————————— - i S e
o Soap::put- H

Result)

S

e

r

change state |y

to

0.k.(successful €

change state i y ' S switch r
to o.k. put (Sign Switch State-o.k./content information) command) | -
Pme— . Soap::put- ’_4_ ______ A
Result p

p

|

Figure 7: Switching a sign (process order in case of proper functioning)

OCIT-C_Protocol_V2.0_R1_D1

Page 17 of 41

Switching a sign (process order in case of faults)

Soap- Soap- Soap- Soap-
Server-| Client-I) | Server-l| Client-l
switch comymand to the ut (Slgn Swite forward $witch to
7] intelface Command) application]
______________________________ >
Soap::put- S
< Result change state |
Cc tonok(not ||
S accepted g
change state .) switch n
. n.o.k. it (Sign Switch State-n.o.k.) command)
. —————— = -~ o —————— -
Soap::.put-
e e S
Result
r €
v switch comymand to the . . r
interface again (repeat after pUt (Slgn Switch forward gwitch to
e delay mak. 3 times) Command) appli¢ation v
B —-—————- »-r—— - ———— e
Soap::put-
2 = Resuilt K
A =
p I Sequence cominues ! A
P | dependingonthe P
I I following answeres | P
| _of the sign server._| |

Figure 8: Switching a sign (process order in case of faults)

In case of a missing response, the switching commands are repeated after a configu-
rable delay. This applies regardless of where the fault arises (no status transition oc-
curs to status "busy” or "ok"). Repeating is stopped after three unsuccessful tries.
Then, the current status on the side of the central system changes to "nok".

OCIT-C_Protocol_V2.0_R1_D1

Page 18 of 41

Status, content and connection monitoring

»n o0

= D < =~ D N

-TT P>

central system

Soap-
Server-|

Soap-
Client-I

change state
n.o.k.

change state
o.k.

change state

put (Sign Switch State-n.o.k.)

sign
Soap- Soap-
Server-| Client-I
change state
to n.o.k(any
errer defcted
on sign)

Soap::put-

o]

Result

ut (Sign Switch State-o0.k{)

change state
to o.k(sign
becomes 0.k.)

Soap::put-

Result

The signserver updates the
central system periodicly.
(Lifecycle telegramm). In
case of non reachable
serverTMS the sign falls

back to default.

o]

ut (Sign Switch State-o0.k|)

change state
to o.k(sign
becomes 0.k.)

Soap::put-

Result

Figure 9: Switching state

W' SQ =

- < =

- T P

The sign server updates the central system periodically even if the switching state
does not change. As a result, the central system receives notifications:

if a sign connected to the sign server changes its status

if a sign changes its content

if the sign server is unreachable (the max. wait time is specified by the central

system)

If the central system is unreachable, the sign server sets the signs to a predefined
display status.

2.3.8.2

Bidirectional communication with regular status inquiry (polling)

The evaluation of states takes place as described in section 2.3.8.1.

OCIT-C_Protocol_V2.0_R1_D1

Page 19 of 41

central system sign

Soap- Soap-
Client-I Server-|
S
c switch command to .) forward switch to i
the interface put (Sign Switch Command) application
P Soap::put- | s aeaeecars 9
- - n
s Result -
e get (Sign Switch State) S
r > e
v - get-response ;
change state to o.k.(successful
€ switch command) v
r get (Sign Switch State) e S e S S e
I-\ e Y get-response a 3
P A
P get (Sign Switch State) P
I get-response » P
B I

Figure 10: Polling

2.3.9 Avoiding sampling delays

To avoid undesirably long sampling delays due to cyclical queries from the client to
the server, a new function is introduced in the protocol. This function works according
to the following principle:

e Structure like function "get"
(i.e. same parameters, just different function name)

Name of the function "wait4Get"

¢ The new function "wait4Get" works like the function "get" with the difference that
in case of no data present on the server (i.e. the return list is empty), the re-
sponse from "wait4Get" is delayed until either a timeout occurs or data are
available on the server.

¢ The client would, in this case, call the "wait4Get" function again immediately af-
ter receiving a response in order to indirectly keep the return channel perma-
nently open.

e To avoid multiple queries within one second, the server can take protective
measures. A potential protective measure would be to permit only one response
per second and return the values in the response collected in this second.

OCIT-C_Protocol V2.0 R1 D1 Page 20 of 41

e The server can restrict the number of clients or object types / objects that can
be queried this way.

e To avoid too many open sockets, the function "wait4Get" makes it possible to
query various object types at the same time. This was accordingly taken into
consideration in the data structures of the function.

The following sequence diagram illustrates the process (simplified for the query of an
object type:

Soap- Soap-
Client-| Server-| TN
N A
inquireAll
P
L inquireAllResponse (data, pos=p1)
— ..-/ (data, pos=p1)
The client initiates
wait4get without any
del :
= wait4get pos=p1)
e >
The server has no new data Server
(related to p1). Server delays the
answere til data available data
buffer
L@ itdget-Response (data, pos=p2) _|
,’ (data since last pos =p1, pos=p2)
The client initiates next =
call of wait4get without <(data, REEER))
any delay i -
\ waitdget (pos=p2) o
~ ‘ J—
< wait4get-Response
(data : pos=p3 and p4)
TN
L

Figure 11: Communication layers - client and server

2.4 OSllayers

The server and client have layers subdivided according to the OSI model into differ-
ent sections with different functions.

The lowest protocol layer is the http protocol, which is responsible for data transfer in
the network.

Above that is the SOAP protocol in the form of a client or a server.

OCIT-C_Protocol V2.0 R1 D1 Page 21 of 41

The protocol manager has the task of providing all commands including the required
data buffers for the functioning of the server.

The application layer represents the connection to the database.

The following figure shows the layer model.

Data/ Data/
Application Application
PM-Client Protokoll-

Manager
WebServer
Soap-Client
oap-Clien (soap)

Figure 12: Communication layers - client and server

OCIT-C_Protocol V2.0 R1 D1 Page 22 of 41

2.5 Protocol functions in detail

Available methods:

Read method to get data

Protokoll [-3 3

—Ldeleteﬂesponse

Respons= of delete

—L_ getContentinfo

—L waitdGetResponse

Generated by XMLSpy www.altova.com

Figure 13: Available methods

OCIT-C_Protocol V2.0 R1 D1 Page 23 of 41

2.5.1 Standard parameters

The standard parameters of the methods are:

Input parameters

UserName and UserPasswd authenticate the user
UserName and UserPasswd are transmitted as normal text. This authentication
should therefore not be used for high security requirements.

watchdog is a structure with which the client informs the server when the next
call can be expected. This can be used by the server for monitoring the client's
time (timeout).

storetime identifies the start of the requested or sent data. This method is only
used for access to saved historical data.

endStore identifies the end of the requested data. This method is only used for
access to saved historical data.

position identifies the position of a pointer in the server's buffer.

The position is received using the method inquireAll or getResponse and used
for the next "get" request (see chapter 2.3.1, Data buffering and position han-
dling).

filterList is a list of objects that should be read
This makes it possible to reduce the amount of data.

Output parameters

lastStart is the timestamp of the last server start-up. If "lastStart" changes from
one response to the next from the server, this is a sign that the data must be re-
synchronized. The client thus resynchronizes with the method inquireAll.

errorCode is an error code generated in case of incorrect commands. It is not
used for improper XML structures. For this there is a message from the SOAP
protocol (fault).

errorTxt is a description of the errorCode that is readable to humans.

position is the position of last data access. It must be used for subsequent data
access.

datalList is a list with the data requested.

25.2 put

The method "put” is used to configure objects. It contains all the instances of the data
that should be configured.

OCIT-C_Protocol V2.0 R1 D1 Page 24 of 41

| :userName

User identifier; anly
characters, numbers and _
allowwad

| Pazzword

,watchdng
Tirmeaut supervision of the
client at the server side, The

m= == watchdog is used to issue a

self control of the client, The
server notes 3 timeout if the
weatchdogtirne of client
elapses. In caze of empty
watchdag na tinneaut
supetwision is awailable,

fuhjec‘tType

Objekttype to identify the

Canfiquration rmethad Far |
|
|
|
| type of the required data
|
|
|
|

data

(first search key],
[contents of getContentInfo)

List of objects (data), which
should be configured at the
SErVer,

"putResponse" is the response to "put".

It contains all the non-configurable data, usually none.

(Forma ‘
"1999-05-31T13:20:00.000+
02:00° ‘

I
: Emorcode (0:no error)
|
|

putResponse [—— = T

esponse of put method

Dummy , which
includes possible additional
‘ data.

2.5.3 get

This method is used to query data.

OCIT-C_Protocol_V2.0_R1_D1

Page 25 of 41

In addition to the standard parameter
e it has either start and end time to receive all the values within this time range

e or the position number of the data to be queried. Normally, this is the position
number that was returned by the last method "inquireAllResponse" or
"getResponse”.

,userName

Read method to get data
(delta since last request

1
E)El‘ 1 va getResult)

OCIT-C_Protocol V2.0 R1 D1 Page 26 of 41

"getResponse” is the response to "get"

getResponseType

| ~lastStart

last start af the serrer
[Formnat:

"1999-05-31T 13:20:00,000 +
02:00" entsprcht
21.05,1999 1320 MESZ
(MEZ=+01:00])

Errorcode [0:no error]

:ErrurText

| LErrorCode
| plain ervar text

storetime

|
|
|
|
|
|
|
|
|
getResponse E]—|—I:—--—:EI— retumed by inquireall and I
|
|
|
|
|
|
|
|
|
|

W |

get [Formnat:

Response of get methad | 7199905317 12:20:00,000+

02:00" equals 21.05,1999

| 12:20 MESZ
(MEZ=-+01:00]].

;pusitiun

| Iz used ta identify entres in

| the buffer of the zerver, Will
be retumed by

| inquireAllResponze and
getRespanse and rmust be
qiven as parameter an

| fallowing get-call, IF position
equals 0 the cornplete buffer

| will be returned.,

adatalist

Fead Duata

OCIT-C_Protocol V2.0 R1 D1 Page 27 of 41

2.5.4 inquireAll

Method for querying all the data of an object type with the last status / the content of
the object. This method guarantees to the client that all queried objects are included

in the response.

The method "InquireAll" contains only one standard parameter.

Read method to ger all
obiects of one object type

|nquueAIITy|)c~

Suserllame

User identifist; only
char , nurnbers-and _

sllowed

1
'
'
1
s

'
Ll
1 Password
'

Timeout sug 1 of the
client at tha server side,
The watc used ta

Issue aself control of the
client, The s
tirmeout iF the
of client ela
empty watchdog no

¥ notas 3

----------------------------.‘

fimeaoul Supengdsion 15

available,

—(—-o—)E}—-FoblectType

Objekttypes to idantify the
tha required data
arch keyl,

{contants of
getContantInfo)

AilterList

Objectfilter (3 empty list
means on all re QUILE exce
activatel H{L Ob

Duarnrry t,--E!-':m':m.,. which
includes possible additional
data,

cts of
this type, Onactivats
means a —"r'fhf list:no
object ¢ f this typeal

OCIT-C_Protocol_V2.0_R1_D1

Page 28 of 41

"inquireAllResponse" is the response with all the requested content.

inquireAllResponseType

inquiredliResponse E}H""‘:E—

Response af inguiredll

;Iastﬁtart

last start af the server
[Formnat:

"1999-05-31T 12:20:00,000 +
02:00" entspricht
21.05,1999 1320 MESZ
(MEZ= +01:000])

:errurCude

Errorcode [0:no etror]

:ErrurTex’t

plain ervar text

fsturetime

returned by inguiredll and
get [Formnat:
"1999-05-21T12:20:00.000 +
02:00" equals 31.0%,1999
13520 MESZ
(MEZ=-+01:00]].

;pusitiun

Iz uszed to identify enthes in
the buffer of the server, Will
be retumed by
inquireAllResponze and
getResponse and rmust be
qiven as pakarneter on
fallowing get-call, IF position
equals 0 the cornplete buffer
will be returmed.,

adatalist

Fead Data

OCIT-C_Protocol_V2.0_R1_D1

Page 29 of 41

2.5.5 delete

The method "delete” is used to delete dynamic data (for which this is permitted). In-

stances of the data to be deleted must be entered in the filter list.

[doete &

Method to delate dynarnic

datan

:userﬂame

User identifier; only
characters, nurnbers and _
allowed

Password

,watchdug
Tirneout supetvision of the
client at the server side, The
watchdog is used to issue a
zelf contral of the cliznt. The
server notes a tirmeout if the
watchdagtirne of cliant
elapses, In case of ampty
watchdog no tirmeout
superwision is awailable,

fuhjet:tT}rpe

Objekttype to identify the
type of the required data
(first zearch keyl.

[contents of gatContentInfo)

AfilterList

Obijectfilter [a ampty list
means on all requsts except
activate: ALL Sbjects of this
type, On activate means a
ernpty listina object of this
type]

"deleteResponse” is the response to "delete". It contains the instances of the data
that could not be deleted.

deleteResponse [ﬂ@—

Response of delate

—— —
deleteResponseType

;Iasrtﬁtart

last start of the server
[Fommnat:

"1999-05-31T 13:20:00,000 +
02:00" entspricht
231.05,1993 12:20 MESE
(PEZ=+01:00])

LerrorCode

Envarcade [0ino error]

:errurTe:r.t

plain amor text

deleteBadList

List of not deleted objects

OCIT-C_Protocol_V2.0_R1_D1

Page 30 of 41

2.5.6 getContentinfo

Method for querying the server's object contents. This method's parameters are the
name of the client, the password and optionally the time for the watchdog.

getContentinfoType

| :userHame

zer identifier; only
charactets, numbers and _

allowwed
getContentinfo E]—I—[—--—:E— _

Method ta retriewe available |
Password |

contents of the server
,wa‘tchdug

Timeout supervision of the
| client at the server side, The
watchdog is used to issue a
| self contral of the client, The
server notes a tirmeout iF the
| watchdogtime of client
elapses, In case af eripby
| watchdog no tirneout
supervision is available, |

The response "getContentinfoResponse"” contains a list of the available object types
with their access permissions and recommended update cycles.

—
getContentinfoResponseType

lastStart

F]

last start of the saner
(Format:
"1999-05-31T13:20:00.000+
02:00" e icht

31.05.1999 13:20 MESZ
@E‘ (MEZ=-+01:00))

errorCode

|
- : Errorcode (0:no error)
getContentinfoResponse I |

Response of getContentInfo [|
plain error text

—(—--—:IE'—‘ contentinfolist

List of all available object
types

L

OCIT-C_Protocol V2.0 R1 D1 Page 31 of 41

2.5.7 wait4Get

Method for querying data from the server. This method's parameters are the same
parameters as "get", but it makes it possible to query multiple object types at once.

waitdGetType [H

watchdog

[attributes

! maxWaitTime |

userliame

; == fobjec‘lType

L filterList

Generated by XMLSpy www.altova.com

OCIT-C_Protocol V2.0 R1 D1 Page 32 of 41

"Wait4GetResponse" is the response with the changes since the last query.

EwaiﬁGetFtesponseType

adatalist

Reat Datz
L
Generated by XMLSpy www .altova.com

2.6 Data structures

Data structures added to the protocol, e.g. the methods "put”, "inquireAllIResponse”,
etc., are defined in separate schema files for the protocol.

OCIT-C_Protocol V2.0 R1 D1 Page 33 of 41

2.7 Definition ErrorCodes

The following errorCodes are defined in protocol.xsd:

errorCode Meaning
0 no error
1 access error
2 buffer overflow
10 requested data unavailable
11 requested data cannot be sent
12 requested data cannot be deleted
13 values cannot be set
14 found empty object type
15 object type not found
16 error writing data
17 error creating data
18 error deleting data
19 missing filter for deletions
20 server shortly unavailable
21 missing parameters to execute the method
22 internal error
23 other registered accessing client
30 one file cannot be accessed
31 error opening a file
32 error reading a file
33 internal error, reading the archive
34 internal error, parsing the archive
35 error, parsing the archive
36 error activating
37 error deactivating
38 error reading data
39 object not found
40 invalid time range.
41 time range complete (no error)
42 missing data sets
43 returned time range incomplete

OCIT-C_Protocol_V2.0_R1_D1

Page 34 of 41

2.8 Recommended use

This section describes how the server and client can be handled in various cases.
These are only recommendations from which project-specific deviations can be
made.

2.8.1 Data supply with multiple subscribers

In cases in which there are multiple subscribers to the server's data that occasionally
request data and do not need a real-time connection, the architecture described in
the following is recommended.

e The data source contains the SOAPServerinterface, which has functions for data
buffering.
The data sink contains the SOAPCIlientinterface, which enables access to the
SOAP server (methods inquireAll and get).

This way the client can only access the server on request. Moreover, the protocol
can be implemented with little effort. In the case of an internet connection, the data
source is the server and an internet utility is the client.

_— furth;zrtuse of
ata
SoapServer- // 4 SoapClient-
Interface \\ 9 Interface
Data Source Data Sink -

Figure 14: Data supply with multiple subscribers

2.8.2 Configuration interface

If a system (data source) needs a configuration interface to the data sink, the follow-
ing architecture is recommended:

e The data source is the client
e The data sink is the server
Properties:

e Data transfer only on request

e Real-time configuration, no polling required

OCIT-C_Protocol V2.0 R1 D1 Page 35 of 41

e Multiple configuration interfaces possible with standard communication interface
to a data sink.

Data further use of
data
SoapClient- . SoapServer-
Interface d Interface
/
Data Source - Data Sink

Figure 15: Multiple configuration interfaces

A case for this would be subsystems (client) that forward the data they collect, e.g.
data on traffic problems. This configuration should only be used to avoid overload sit-
uations.

2.8.3 Data update between central equipment (unidirectional)
In this case, it is recommended that:
e The data source is the server

e The data sink is the client

Bisits further use of

l data
SoapServer- .

P » SoapClient-

Interface
Interface
CentralUnit as Data Central Unit(s) as
Source Consumer

Figure 16: Configuration for data supply to the client

This is practically the same configuration as for data supply with multiple subscribers.

2.8.4 Data update between central equipment (bidirectional)

If a bidirectional interface is needed, the interface can be doubled because the cen-
tral equipment is client and server at the same time.

OCIT-C_Protocol V2.0 R1 D1 Page 36 of 41

Data

Soap-
Client-
Interface

SoapServer-
Interface

*

Data
Soap-
2 : P SoapServer-
Client-
Interface
Interface

CentralUnit 1

Figure 17: Configuration for data exchange: Server <-> Server

CentralUnit2

OCIT-C_Protocol_V2.0_R1_D1

Page 37 of 41

List of f

Abbildung 1:

Abbildung 2:
SOAPserverl

Abbildung 3:

Abbildung 4:

Abbildung 5:
Abbildung 6:
Abbildung 7:
Abbildung 8:
Abbildung 9:

Abbildung 10

Abbildung 11:
Abbildung 12:
Abbildung 13:
Abbildung 14:
Abbildung 15:

Abbildung 16:

igures
Ubliche Reihenfolge zum Lesen von Daten vom SOAPserverinterface 10

Ubliche Reihenfolge zum Schreiben oder Konfigurieren von Daten zum
10T = Lo = T 11

Datenpufferung am Server und Positionsbehandlung am Client 12

Handhabung langer Transaktionszeiten (ahnliche Reihenfolge gilt auch fir

e L=) R TP T PP T PP TP TP PP TP TP PRTRPPRPPRRPRRTN 13
Multi Client FENIGKEITueiiiiiiiiii e 15
NEUSTAt AES SEIVEISeiiiiiieiiiiiiiee ittt 16
Schalten eines Schildes (Ablaufreihenfolge im Gutfall)cc.ooooiiiiiiinnnnnn. 17
Schalten eines Schildes (Ablaufreihenfolge im Fehlerfall)..............ccoooeeeeee. 18
SCNAIZUSTANG ... 19
: Regelmafige Zustandsabfrage............uvieiiiieiiiiiiiiiiie e 20

Kommunikationschichten Client und Server............cccccvvviiiiiiiiiiiiiiiiiiiiiiiieens 21
Kommunikationschichten Client und Server............cccccvvviiiiiiiiiiiiiiiiiiiiiiiieens 22
Verfligbare Methoden ... e 23
Datenlieferung an mehrere AbNENMEruuiiiiiiiiiiiiiiies 35
Mehrere Konfigurations-SchnittStellenccccoeiiiiiiiiiiiiiiiiiiiiiiiiieees 36
Konfiguration bei Datenlieferung an Client..............ccoooiieiiiiiiiiiiiiieee e, 36
Konfiguration bei Datenaustausch Server <-> SEervercccccovvveeeeeeeeeeeennnns 37

Abbildung 17:

OCIT-C_Protocol V2.0 R1 D1 Page 38 of 41

Terms and abbreviations

Term/abbreviation Description

AP User program

Client A program which wishes to use services offered by other (servers) and
actively opens them to do so.

DATEX Il Specifications of Technical Committee 278 of the European Committee
for Standardization (CEN) for the exchange of traffic-related data be-
tween traffic control centers.

FTP File Transfer Protocol, a network protocol for transferring files

http HyperText Transfer Protocol, a protocol for transferring data over a net-
work.

TSL Traffic signal light system

Method The algorithms assigned to a class of objects. Also used as a synonym
for function, procedure, command, action.

PT Public Transport

OCIT Open Communication Interface for Road Traffic Control Systems.

OCIT-C Open Communication Interface for Road Traffic Control Systems - Center
to Center. OCIT-C covers the functions for communicating between the
central traffic control and traffic guidance systems.

OCIT-O OCIT Outstations
Interface between traffic control centres and traffic signal controllers for
controlling and supplying the traffic signal controllers.

OoDG OCIT Developer Group

osl Open Systems Interconnection Reference Model, a communication
model of the International Organization for Standardization (ISO) for com-
munication protocols in computer networks.

0TS 2 Open Traffic Systems, Version 2

Server A program that offers certain services and passively waits on incoming
calls (from clients) to do so.

SOAP Simple Object Access Protocol, it is a protocol which enables data to be
exchanged between systems. SOAP uses the "Remote Procedure Call",
through which it enables the functions in other computers to be called.
See http://mww.w3.0rg/TR/ISOAP

SSL Secure Socket Layer.

OCIT-C_Protocol V2.0 R1 D1 Page 39 of 41

Soap-Server-Interface

Soap and Protocolmanager on the server side

Soap-Client-Interface

Soap and Protocolmanager on the client side

Protocolmanager

Protocol layer used for implementing commands in the buffer

TLS

Technical delivery terms for roadway stations. The TLS are a standard
for the structure of traffic control systems on major German Federal high-
ways. Issued by: German Federal Highway Research Institute

TCP/IP

Transmission Control Protocol / Internet Protocol, a family of network pro-
tocols for the Internet.

VDV

Association of German Transportation Companies

WSDL

Web Services Description Language, a platform / programme language
and protocol-independent description language for network services (web
services) for exchanging messages based on XML.

XML

Extensible Markup Language, a markup language for presenting struc-
tured data in the form of text. XML is used among other things for a plat-
form and implementation-independent exchange of data between com-
puter systems. An XML document is made up of text characters, in the
most basic case in ASCII coding, and is therefore machine-readable. It
does not contain binary data. The XML specification is published by the
World Wide Web Consortium (W3C) as a recommendation.

XSD

XML schema, a recommendation of the World Wide Web Consortium
(W3C) for defining structures for XML documents. The structure is de-
scribed in the form of an XML document. Furthermore, it supports a large
number of data types. The XSD schema language describes data types,
individual XML schema instances (documents) and groups of such in-
stances. A specific XML schema is called an XSD (XML Schema Defin-
tion) and the file usually has the ending ".xsd".

Further explanations about the technical terms and abbreviations used in this document can
be found in “OCIT — O Glossary V3.0”.

OCIT-C_Protocol V2.0 R1 D1 Page 40 of 41

OCIT-C_Protocol_V2.0 R1_D1

Copyright © 2018 ODG & Partner

