

OCIT Developer Group (ODG)

OCIT® is a registered trademark of the companies AVT-STOYE, Siemens, Stührenberg and
SWARCO

Open Communication Interface for Road Traffic Control Systems

Offene Schnittstellen für die Straßenverkehrstechnik

OCIT Outstations

Basic Functions for Field Devices

OCIT-O_Basis_V3.0_D01

OCIT-O_Basis_V3.0_D01 Page 2 of 67

OCIT Outstations

Basic Functions for Field Devices

Document: OCIT-O_Basis_V3.0_D01

Issued by: OCIT Developer Group (ODG)

Contact: www.ocit.org

Copyright © 2018 ODG. Subject to modifications. Documents with a more recent version or revision
level replace all contents of the previous versions.

file:///C:/Users/scr2lz/AppData/Local/Vorbereitung/DokuArbeitsstand/www.ocit.org

OCIT-O_Basis_V3.0_D01 Page 3 of 67

 Table of contents

Document history ... 6

Specifications ... 7

1 Introduction ... 7

2 Special definitions ... 7

2.1 System time .. 7

2.2 Detecting faults in the transmission path .. 8

2.2.1 Distinguishing transmission faults .. 8

2.2.1.1 Differentiation after the fault is corrected... 9

2.2.1.2 Differentiation immediately after occurrence .. 9

2.3 Counting method for numbered elements ... 10

2.4 Operation identifier .. 10

3 System access points ... 17

3.1 Central system access ... 17

4 Object definitions .. 19

4.1 System objects .. 19

4.1.1 System object field device ... 19

4.1.2 System Object Control Center .. 23

4.1.3 System object RemoteDevice ... 23

4.1.4 RemoteService .. 26

4.1.4.1 Direct external access to the field device .. 27

4.2 Messages and measurement values (archives) ... 27

4.2.1 Properties of the archives .. 28

4.2.2 The archive interface .. 29

4.2.3 Elements of the archive interface ... 30

OCIT-O_Basis_V3.0_D01 Page 4 of 67

4.2.4 List ... 31

4.2.4.1 Transmission format ... 33

4.2.4.2 Methods for List ... 34

4.2.4.3 Event handlers for lists in the control center ... 42

4.2.5 Second frame/Task frame ... 45

4.2.6 Task ... 46

4.2.6.1 Methods for all tasks ... 47

4.2.6.2 Message task ... 48

4.2.7 Message ... 51

4.2.8 Message part ... 52

4.2.8.1 Category and severity of a message part .. 53

4.2.8.2 Definition of message parts ... 54

4.2.8.3 Structure of a message part .. 54

4.2.8.4 Format string for message parts ... 55

4.2.9 Which archives exist? ... 55

4.2.10 Behavior in the event of a power outage ... 56

4.2.11 Transmission format of archive data (format of the message) 56

4.2.12 Element descriptions for message archive ... 56

5 Procedures Message and Measurement Values ... 60

5.1 List with predefined tasks ... 60

5.1.1 Objective ... 60

5.1.2 Process ... 60

5.2 Changing lists ... 61

5.3 Changing the degree (of significance) of individual messages 61

5.4 Retrieving data ... 62

5.4.1 Continuous retrieval of data .. 62

5.4.2 Spontaneous retrieval of parts of the ring buffer 63

OCIT-O_Basis_V3.0_D01 Page 5 of 67

5.4.3 Triggered data retrieval .. 63

5.4.4 Retrieving a dataset immediately after it occurs 64

5.5 Determining a change in the list ... 64

5.6 Changing a task while it is running ... 65

5.7 Synchronizing after a transfer fault... 65

6 Figure .. 66

7 Glossary ... 66

OCIT-O_Basis_V3.0_D01 Page 6 of 67

 Document history

Version
Status

Distribu-
tion list

Date Comment

V3.0 D01 ODG
internal

2015-08-
06

Draft version of OCIT-O AG5

2.4 Operation identifier
Content revised

2016-12-
05

Operating status archive removed

2018-01-
30

Beta version (draft status

2018-03-
14

Specifications KD V3.0

V3.0 A01 PUBLIC
2018-03-
15

For OCIT-C V3.0 ODG Homepage

OCIT-O_Basis_V3.0_D01 Page 7 of 67

Specifications

The OCIT Outstations configuration document OCIT-O KD V3.0 contains an
overview of all the specifications whose copyrights are managed by the ODG and
arranges versions and revision levels according to:

• associated specifications of the interface "OCIT outstations for traffic signal con-
trollers" with reference to the corresponding OCIT-C specifications,

• gives information on the use of the transmission profiles and

• provides an overview of packages of specifications for interfaces for the use of
which a nominal fee is required by ODG

The current issue of the document is published on www.ocit.org.

1 Introduction

Provided in this document are definitions about functions that are available in the
traffic signal controllers, but also in traffic measuring points and in other typical field
devices used in road traffic control systems in a similar fashion, such as archives or
the messages "Door open", "Fault", etc. It is not required that OCIT-outstations-
compatible devices support all the functions defined here. They only support those
functions that are necessary for the relevant purpose and design. The definitions
apply to field devices and control centers.

2 Special definitions

2.1 System time

The traffic signal controllers have local clocks. Their exact setting is made in the field

devices, which can use the time-standardization service NTP version 4 (RFC 591

1305) of the control center for this. The time-standardization service compensates
for the time errors caused by the transmission time between the control center and
the field device. For additional definitions see the document OCIT-O rules and proto-
cols.

In addition, the device time can be queried directly by the control center and the con-
trol center time can be queried by the field device (see System object field device
4.1.1 und System Object Control Center). These queries are prone to time errors
caused by the transmission time between the control center and the field device.

file:///C:/Users/scr2lz/AppData/Local/Vorbereitung/DokuArbeitsstand/www.ocit.org

OCIT-O_Basis_V3.0_D01 Page 8 of 67

2.2 Detecting faults in the transmission path

Can be supplemented with definitions in the OCIT-O Profile_nn documents.

A "fault in the transmission path" is understood here as a complete failure in the
transmission path for several seconds, such as one that might occur if the connec-
tion is interrupted ("communication fault") or if there is a power supply failure ("power
outage"). Transmission faults are caused by defective system components. Sporadic
transmission faults may temporarily lead to comparable fault patterns.

Transmission faults may be caused by:

• Failure of the central computer or the field device

• Failure of the transmission units in the field device or the control center

• Interruption in the transmission path

• Power outage

Transmission faults of this kind are detected if telegrams are missing, while how
quickly this can be detected depends on how often telegrams are sent:

• Detection possibility in the control center:
There is no response to the telegrams coming from the control center.

• Detection possibility in the field device:
No telegrams arrive from the control center.

Control telegrams can be sent at regular intervals for detection, and if none are re-
ceived, the presence of a transmission fault can be concluded. Detection possibilities
based on the functions of the transmission device such as carrier monitoring are not
listed here because they depend on the type, and the transmission devices for the
OCIT outstations are not required.

2.2.1 Distinguishing transmission faults

Transmission faults detected by the field device generates an OCIT outstation mes-

sage Communication Fault (4.2.12) and make their way to the center device via the
query of the default message archive (4.2.9).

The OCIT outstation message "Communication Fault" includes "Power Outage" as a
cause of the fault. However, there is an option to differentiate the "power outage"
from other causes.

Note: Due to relevant technology selected to detect a communication fault or the
amount of time between telegrams, the times of origin of the "Communication Fault"
messages in the control center and in the field device may differ significantly!

OCIT-O_Basis_V3.0_D01 Page 9 of 67

2.2.1.1 Differentiation after the fault is corrected

After the communication fault is corrected, if a power outage was the cause, OCIT
outstations messages that make it possible for the control center to pinpoint the
cause after the fact are transmitted from the field device to the control center (stand-
ard message archive).

• Power OFF with details about the time of the outage (4.2.12)

• Power ON (4.2.12)

• Communication ok (4.2.12)

This allows the control center to detect the cause of the power outage at a later time
and to pinpoint the original message "Communication Fault".

2.2.1.2 Differentiation immediately after occurrence

This option allows the field devices to immediately communicate a power outage,
thus allowing the control center to immediately narrow down the "Communication
Fault" to the fault at hand.

To do so, the field devices require a buffering of the power supply (short-term UPS)
in order to continue supplying power to the device components needed for the mes-
sage for the duration required for the message routine. Two methods are defined for
transmitting information about the power outage, which vary in terms of the length of
the necessary buffer time for the power supply.

Version a) power outage message via standard message archive

Message Power OFF with information about the time of the failure in the de-
fault message archive. Several transactions are needed to collect the mes-
sage from the standard message archive. Choose the correct length for the
buffer time of the field device.

Version b) additional power outage message via event list

In the event of a power outage, the field device calls up the

EvListe::OnNetzAus() method in the event destination registered for the
standard message archive. The method is called up on the btpplHi channel to
prioritize the transmission. The OCIT address of the field device and the
previous identifier of the fault are transmitted in the method's parameters. In
addition to calling up the method, the message Power OFF is logged in the
standard message archive, which is either transmitted immediately or after the
power supply returns. The same process identifier is used that is transmitted

with EvListe::OnNetzAus(). This allows the control center to uniquely assign
event and message.

It is up to the manufacturers' discretion whether they want to offer this optional
feature, "Detecting a power outage immediately after its occurrence". If this
option is offered, the following definition applies: For several seconds, the field
device is capable of continuing OCIT outstations communication after an op-
erating power outage and to issue the relevant message. The estimated buffer

OCIT-O_Basis_V3.0_D01 Page 10 of 67

times are at around 30 seconds for fixed connections for version a) and at
around 5 seconds for version b). For dial-up connections, the estimated nec-
essary buffer time is at least at one minute for both versions. However, the
buffer times of the power supply are not defined in the OCIT outstations.

Recommendation for message management in a control center:
To prevent an incorrect interpretation of the time of the power outage, the power
outage message archived in the control center should only be derived from the mes-
sage "Power OFF" from the standard message archive. To get information immedi-
ately, the EvListe::OnNetzAus() can be displayed as the status.

2.3 Counting method for numbered elements

• The addressing of numbered items such as signal groups and detectors etc.
begins with the index value 1. The Index is not mapped: Index 1 addresses
item 1 etc. This ensures that the index value with the number used by the us-
ers matches the number of a numbered item.

• The time count starts with the time at 0. Time 0 refers to the first time cycle,
from its beginning to its end.

2.4 Operation identifier

SYSJOBID is used to assign messages to operations.

Throughout the entire system, operations are performed from different sources

(manually or automatically). For traffic signal controllers, for example, these are cen-

tral operator activation of a group, an automatic-time function for switching or TA

switching via a local traffic-actuated logic (TA). These operations may impact several

devices. In order to be able to monitor the operations based on separate messages,

operation identifiers are introduced. All messages with the same operation identifier

within a few days belong to the same operation.

What this requires is that each operation initiator (system component that is able to

initiate certain operations) uses a unique number. OCIT outstations uses permanent-

ly assigned number ranges. The operation identifier is an integral part of the selected

operations. It consists of origin identifier and task number. The origin identifier is a

unique tag for a system component that exercises control over operations or is a

trigger for other operations. The task number is a number consecutively issued for

operations.

Because of the operation identifier

• the field device can organize the internal processes and

• the control center can document the different operators and systems.

OCIT-O_Basis_V3.0_D01 Page 11 of 67

The operation identifier must be unique during the maximum expected runtime of a

control command.

Field device messages caused by operations of use or change operations adopt the

operation identifier of the triggering system component. This way, the operation and

response can be documented in the control center.

The task number is always issued by the system component determined by the

origin identifier.

Additional details are defined in the definitions for certain field devices:

Mandatory:

It is imperative to use the operation identifier.

Examples of objects that carry the operation identifier:

Control center switch requests, current status messages, remote service, supply
transactions, messages. Details can be found in the relevant object definitions.

Rule:

The operation identifier of the system component that exercises control over a
switch status is entered, even if the switch status does not change upon switching
the task (for example: selection of the signal program),
or the operation identifier of the system component that triggered a process (for
example: supply transaction).

OCIT-O_Basis_V3.0_D01 Page 12 of 67

Operation identifier:

Operation identifier Name

Source Task

number

System

name

Origin

Subsystem Type Subtype In-

stance

1 = Control

center

2 = System

access

3 = Field

device

0 = No de-

tails

-
0 to 63

0 to 63

0 to

65535

0 to 65535

0 to 65535

0 to 63

 1 = ZAUT 0 = No details
1 = Day plan
2 = City timetable
3 - 15 free, number for
logic

 Automatic time function
/ control clock

(City timetables, e.g. for
football matches)

 2 = TA logic 0 = No details
1 - 15 unoccupied,
number for logic

 Traffic-actuated logic or
application programs in
field device/control
center

 3 = Service
accesses

0 = No details
1 = Console integrated
2 = Console separate
3 = Service PC
4 = Special intervention
5 = Blocking
6 - 15 unoccupied,
other service accesses

 Service accesses via
local and central con-
soles / PCs

 4 = Trans-
mission
systems

0 = No details
1 = Outbound switch
request
2 = Transmission fault
3 - 15 unoccupied, for
more detailed infor-
mation on the transmis-
sion system component

 Faults in the transmis-
sion system

OCIT-O_Basis_V3.0_D01 Page 13 of 67

Operation identifier Name

Source Task

number

System

name

Origin

Subsystem Type Subtype In-

stance

 5 = Monitor-
ing

0 = No details
1 = Signal monitoring
2 = Intergreen time
monitoring
3 = Conflict monitoring
4 = Minimum green
monitoring
5 = Minimum red moni-
toring
6 = Cycle time monitor
7 - 15 unoccupied, for
more detailed infor-
mation on the monitor-
ing equipment

 Status changes due to
internal monitor

 6 = Supply
data server

0 - 15 unoccupied

 7 = Proces-
sor data
server

0 - 15 unoccupied

 8 = C2X 0 = No details
1 = DENM
2 - 15 unoccupied

 9 - 15 unoc-
cupied

Note: "Unoccupied" means: To be kept unoccupied for later developments in the
standard and not to be used for project-specific solutions.

OCIT-O_Basis_V3.0_D01 Page 14 of 67

Subsystem identifiers:

ID Num-

ber:

Subsystem

0 Not defined

1 Control center

2 System access

3 Field device

Formats:

232 20

Subsystem Typ

e

Subtype Instance Task number

2 bit 4
bit

4 bit Control center: 6 bit Control center: 16 bit

 System access: 6 bit System access: 16 bit

 Field device: 16 bit Field device: 6 bit

Examples:

Operation of central automatic time function (ZAUT), control center 0:

1 1 1 0 Task number Day plan

Operation via central system components, control center 0:

1 3 1 0 Task number Central operation (manual)

Operation via local, separate console (e.g. manual control panel), field device 317:

3 3 2 317 Task number Separate console

For example, lamp replacement:

The service engineer replaces lamps on traffic signal controller number 32.

To do this he first switches off the system on site with his service PC, then he replaces the
lamps, runs a trial with signal program 1 and finally signs out again:

Subsystem = Traffic signal controller (3)
Type = Service access (3)
Subtype = Service PC (3)
Instance = FNr (32)
Task number (1)

OCIT-O_Basis_V3.0_D01 Page 15 of 67

==> SYSJOBID=11 0011 0011 0000000000100000 000001B=0xCCC00801

 ServicePC Feldgerät 32 Zentrale

Signalprogramm 2,

Vorgang=0x1C404711

Meldung: „WartungEin wegen

Lampenwechsel,
Servicetechniker Meier

VorgNrStart=0xCCC00801“

Anmeldung

Ausschaltung

Meldung: „Start Vorgang

0xCCC00801 Ausschaltung

nach AusBlinken“

AusBlinken,

Vorgang=0xCCC00801

Betriebszustandswechsel:

IKnotenEinAus=AusBlinken

Vorgang 0xCCC00801

Einschaltung in

Signalprogramm

1

Meier wechselt

die Lampen

Signalprogramm 1,

Vorgang=0xCCC00802

Meldung: „Start Vorgang

0xCCC00802 Einschaltung in

Programm 1“

Betriebszustandswechsel:

IKnotenEinAus=Ein,
ISignalProgramm=1, Vorgang

0xCCC00802
Abmeldung, Ende

Service
Meldung: „WartungAus wegen

Lampenwechsel,
Servicetechniker Meier

VorgNrEnd=0xCCC00802“

Signalprogramm 2,

Vorgang=0x1C404711

Betriebszustandswechsel:

ISignalProgramm=2, Vorgang

0x1C404711

Probebetrieb

OCIT-O_Basis_V3.0_D01 Page 16 of 67

Figure 1 Flowchart for the lamp replacement example

OCIT-O_Basis_V3.0_D01 Page 17 of 67

3 System access points

The following system access points are provided in an OCIT outstations system:

• Central system access
Makes it possible to connect service tools in the control center and also allows
access to the field devices. The central LAN is used for the application "Central
system access point", and layers 2 and 1 are adjusted accordingly.

• Local system access
Makes it possible to connect service tools in the field device and also allows
access to the control center and other field devices. At this time, there have not
been made any definitions for the "Local system access" application.

3.1 Central system access

Note: The scope of functions was expanded as compared to the previous version
(preparation for user supply). Note the version of the field device.

System access in the control center consists of one or more interfaces that allow
communication with the field devices. They are logically fully identical interfaces with
regard to how they lead to the field devices; however, the connection is made via
LAN. An OCIT control center must offer at least one system access point:

Interfaces Mandatory Project-specific/
Manufacturer-specific

Number 1 > 1

Transmission profile 10 or 100 Mbps
Base T Ethernet

RJ -45 connector

ISDN or other ser-
vices

Protocol OCIT-O like to the field devices

However, the manufacturers may provide additional access points and also ISDN
connections or other services.

The operator / control center manufacturer provides the following information for
each central system access:

• IP address of the system access computer to be connected

• IP address of the gateway computer (if necessary)

• IP address of the name server (DNS)

OCIT-O_Basis_V3.0_D01 Page 18 of 67

• OCIT control center numbers to be used by the system access point, OCIT
field device numbers.

One field device carries out all commands that arrive via the central system access
point.
A valid switching request is accepted as if it arrived from the control center. The "last
come - first serve" principle applies. This may be in conflict with the switching re-
quests of the control center. The status change of the field device is visible in the
control center via the actual vector and the initiator can be detected via the SysJobld.

In the past, the central system access point was meant for the device suppliers' ex-
perts, who with it run their own devices from the control center or from remote loca-
tions, e.g. the device supply, or test device functions. As of OCIT-O version 2.0, this
scope of application has been expanded, the central system access point is now also
used for the user supply with supply tools of any manufacturer. To show clearly how
much responsibility is associated with the use of the central system access point for
the overall functions of the system, the following rule is set in OCIT-O TSC V2.0:

• Upon delivery of the field devices, the password entered for commands via
the central system access point is not the default OCIT-O password, but in-
stead an OCIT-O password that only the manufacturer knows.

• From the central system access point, if this OCIT-O password is not known,
the user can only transmit objects via the central system access point that
are not protected with the SHA-1 algorithm and that do not affect the system
functions. However, data supplies and control commands are protected with
SHA-1 and cannot be transmitted.

• If the customer (operator) needs all of the functions of the central system
access point, this must be ordered separately. This clearly shows the opera-
tor's responsibility for the use of the central system access point. Upon re-
ceipt of this separate request, the field device supplier is then either to con-
figure the field devices with the standard OCIT-O password or with one spec-
ified by the customer. If this password is known, it will be possible to supply
the field devices via the central system access point and to set the switching
requests.

OCIT-O_Basis_V3.0_D01 Page 19 of 67

4 Object definitions

For data definitions, see OCIT-O-Basis-TYPE_Vy.y.xml.

4.1 System objects

OType numbers of the system objects, Member=0 (OCIT outstations):

OType Name Path (from field device)

815 System object field device ./.

817 System object Re-
moteDevice

ZNr(USHORT)/FNr(USHORT)

4.1.1 System object field device

Note: The scope of functions was expanded as compared to the previous version
(ExtendedInstanceInfo). Note the version of the field device.

The purpose of this object is to provide general information via the field device. In
addition, new communication partners can be announce with the field device or their
passwords can be changed.

SytemobjektFeldgeraet (0:815)

SystemobjektFeldgeraet

METHOD Name Description

100 GetGeraeteID Reads the manufacturer, version and device type. When
updated, these parameters may change.

The version identifiers supplied by the GetGeraeteID
method allows the device's supported scope of functions to
be queried.

Output parameters

RetCode OK: Function was not correctly performed.

FgType 1: Control center
2: System access
3: Field device

Member Refer to OCIT-O protocol for ID of the device manufacturer

Devicetype Type of device that is connected (manufacturer specific
name).

Version OCIT-O version:
Historic version identifiers are:

OCIT-O_Basis_V3.0_D01 Page 20 of 67

SystemobjektFeldgeraet

METHOD Name Description

1 (stands for 1.0 or 1.1), 1.0 and 1.1.

As of Version 2.0, use the supported OCIT-O Version (see
reference documents about OCIT-O version) in the form
x.y. Example: 2.0 or 2.1

SubVersion Manufacturer specific version identifiers, e.g. software ver-
sions.

APVersion Version of the application program software

101 Cre-

ateRemoteEntry

creates a new remote entry

Input parameters

ZNr, FNr ZNr, FNr of the external device

RemoteType 1: Control center
2: System access
3: Field device

Output parameters

RetCode OK: Entry was created.
TOO_MANY: Entry table is full.
EXISTS_ALREADY: RemoteDevice already exists.

102 DropRemoteEntry deletes the remote entry

Input parameters

ZNr, FNr ZNr, FNr of the external device

Output parameters

RetCode OK: Entry was created.

PARAM_INVALID if the entry to be deleted does not exist.

103 GetTime returns the device's current time

Output parameters

RetCode : RetCode OK: Time was delivered.

Zeit :
ZEITSTEMPEL_UT
C

Device's current time

ZEITZONE : SLONG Time zone: UTC deviation from local device time in sec-
onds; e.g. +3600 seconds for CET, or +7200 for CEDT
(Central European daylight time). East of Greenwich, al-
ways with a plus sign.

ZEITQUELLE Time source (unknown, quartz, control center, DCF, GPS)

104 InstanceInfo Supplies all entity references that match the reference indi-
cated in the following. The path may also only be partially
specified. The method supplies a max. of 255 references to
entities that are of the specified type or a specialization
thereof and the path of which begins like the specified

OCIT-O_Basis_V3.0_D01 Page 21 of 67

SystemobjektFeldgeraet

METHOD Name Description

path.

This method may be used, for example, to read out all
tasks for a list.

Input parameters

key : BaseOb-
jType?^3

key.RefLen

key.Member

key.Otype
Member, OType specifies the basic data type from which
the method delivers entity references.

key.path .. Path parameters depending on the type speci-
fied above. Parameters can be left out of the end of the
path.

Output parameters

RetCode OK Function was performed correctly (even if class is
known but no entity was found).
PARAM_INVALID if the class referenced by the key is un-
known.

TOO_MANY if there are more than 255 entity references.
No reference is returned.

Path[] : paths Entity reference list consisting of:

paths.quantity

paths[].RefLen

paths[].Member

paths[].Otype

paths[]. ... Path parameter depending on the type specified
for the runtime.

105 ExtendedInstance

Info

ExtendedInstanceInfo has the same function as the In-
stanceInfo, with the only difference that there are 65535
possible return values.

106 GetListConfig Supplies the configuration for one or for several lists, for all
or for one selected field device.
A max. of 65535 list info instances are returned with the
data about the jobs and the job elements.

Input parameters

Anzahl Number of the following list elements

ListenNr Array of list numbers for which configurations are queried.
If an array is empty (length zero), the configuration of all
lists is returned -

ZnrFnrFilter.ZNR Filter, if not equal to null values, only the list info of these
ZNR is returned, if null values, list info for all locally defined
ZNRs are returned.

../../../../../Siemens_zelgerpe/ocit-o-v2/ocit_xml_vor_workshop_12/ocitf_r.html#ListenNr0
../../../../../Siemens_zelgerpe/ocit-o-v2/ocit_xml_vor_workshop_12/ocitf_r.html#ZNR_FNR0
../../../../../Siemens_zelgerpe/ocit-o-v2/ocit_xml_vor_workshop_12/ocitf_r.html#OBJECT_ID_USHORT0

OCIT-O_Basis_V3.0_D01 Page 22 of 67

SystemobjektFeldgeraet

METHOD Name Description

Only important for the control center!

ZnrFnrFilter.FNR Filter, if not equal to null values, only the list info of these
FNR is returned, if null values, list info for all locally defined
FNRs are returned.
Only important for the control center!

Output parameters

RetCode OK. Function was not performed correctly (even if the input
parameter listNrs is empty and not changeable list exists).

PARAM_INVALID if at least one of the requested lists does
not exist or fnr filter is unknown.

TOO_MANY: If there are more than 65535 paths and data
of lists, tasks and task elements.

listObjects : Listen-
Info[]

List with list info structures consisting of:

- List reference (from ZNR)

- AInfo : Task info[] consisting of:

- Task reference (from list)

 - Task element including data

107
GetDetExtChan-

nels

Returns a list of numbers of all the binary inputs that sup-
port advanced detector values.

Output parameters

RetCode OK: Function was not correctly performed.

channels[]
Array of numbers of all the binary inputs that support ad-
vanced detector values.

Overview of the parameter structure of GetListConfig:

../../../../../Siemens_zelgerpe/ocit-o-v2/ocit_xml_vor_workshop_12/ocitf_r.html#ZNR_FNR0
../../../../../Siemens_zelgerpe/ocit-o-v2/ocit_xml_vor_workshop_12/ocitf_r.html#OBJECT_ID_USHORT0

OCIT-O_Basis_V3.0_D01 Page 23 of 67

«Strukt .»
ListenInfo

«Strukt .» AuftragsInfo

AuftragsElementAuftrag

1

-AInfo

*

1

-Auftrag1

1

-AE
*

Liste

1

-List*

Note: The version identifiers supplied by the GetGeraeteID method allows the de-
vice's supported scope of functions to be queried. Especially the VERSION element
makes it possible, for example for the control center to read scope of supported ver-
sions for a field device based on its OCIT version status and to operate accordingly.

The OCIT version identifier has the format Version.Subversion, that is

OCIT-Outstations V1.0 "1.0" or "1" (downward compatability)

OCIT-Outstations V1.1 "1.1"

OCIT-Outstations V2.0 "2.0"

OCIT-Outstations V3.0 "3.0"

4.1.2 System Object Control Center

Because from the BTPPL perspective the control center is a field device, the system
object FieldDevice also exists in the control center.

4.1.3 System object RemoteDevice

The purpose of this object is to provide general information via the field device. In
addition, new communication partners can be announce with the field device and
their passwords can be changed.

The Remote Device objects provide individual passwords for access to other IP ad-
dresses or to other field devices. The OCIT-O password can be changed with this
object. The instance with ZNr and FNr that are the same as those included in the
field device uses the default OCIT-O password for unknown IP addresses.

RemoteDevice (0:817)

OCIT-O_Basis_V3.0_D01 Page 24 of 67

RemoteDevice

Path: ZNr, FNr

METHOD Name Description

0 Get

Output parameters

IpAdresse IP address that is set for this remote device

IpName IP host name of this remote device

FgTyp 1: Control center
2: System access
3: Field device

100 SetPassword Field devices know at least the following passwords:

• Password for the field device itself (pre-programmed with
"OCITPASSWORD" upon delivery)

• Password for the control center (pre-programmed with
"OCITPASSWORD" upon delivery)

• Password of the replacement control center

• Password of the central system access

• Password for unknown IP addresses (default)

An IP address, ZNr, FNr and host name of the approved commu-
nications partner is assigned to each OCIT-O password, except
for the default one. BTPPL calculates the suitable OCIT-O pass-
word based on the sender IP address.

Input parameters

OCIT-O_Basis_V3.0_D01 Page 25 of 67

RemoteDevice

NewPassword
: UBYTE[20]

Permitted characters: [a...z], [A...Z], [0 to 9]

The array is structured in the following manner:

NewPassword[0...11]=neues OCIT-O Passwort [0...11] XOR Schleier[0...11]
NewPassword[12...19]=Schleier[12...19]

If the OCIT-O password has less than 12 characters, it will be filled
with binary zeros. The OCIT-O password is made unidentifiable by
the XOR operation with a veil.

The veil is formed with the aid of the SHA-1 algorithm. For this
purpose, the following formula is performed with the device's old
OCIT-O password:

Veil := SHA-1(old OCIT-O password + ´.´ + ZNRDestina-
tionAddress + ´.´ + FNRDestinationAddress + . Veil + old OCIT-O
password + ´.´ + ZNRDestinationAddress + ´.´ + FNRDestina-
tionAddress)

The VEIL is a hexadecimal defined array with the following content:

00h: 49 61 65 21 20 49 61 65 21 20 50 68 20 6E 67 6C

10h: 75 69 20 6D 67 6C 77 20 6E 61 66 68 20 43 74 68

20h: 75 6C 68 75 20 52 20 6C 79 65 68 20 77 61 67 6E

30h: 20 6E 61 67 6C 20 66 68 74 61 67 6E

Example: If the old OCIT-O password 'OCITPASSWORD' and the
field device is linked to the control center 12 with device number
567, the veil is the SHA-1 checksum with the character sequence

00h: 4F 43 49 54 50 41 53 53 57 4F 52 44 2E 31 32 2E ;
OCITPASSWORD.12.

10h: 35 36 37 49 61 65 21 20 49 61 65 21 20 50 68 20 ; 567

20h: 6E 67 6C 75 69 20 6D 67 6C 77 20 6E 61 66 68 20

30h: 43 74 68 75 6C 68 75 20 52 20 6C 79 65 68 20 77

40h: 61 67 6E 20 6E 61 67 6C 20 66 68 74 61 67 6E 4F;

50h: 43 49 54 50 41 53 53 57 4F 52 44 2E 31 32 2E 35;
OCITPASSWORD.12.5

60h: 36 37 ; 67

This will change the veil depending on the field device, even if the
OCIT-O password is the same for all devices.

The field device calculates the same veil (with its old OCIT-O
password). If this is again placed over the text, the new OCIT-O
password becomes significant. It will be used for all further opera-
tions.

Output parameters

RetCode OK: OCIT-O password changed.

ACCESS_DENIED; Control center passwords may only be
changed from the control center.

OCIT-O_Basis_V3.0_D01 Page 26 of 67

4.1.4 RemoteService

Interface objects for Remote (via the IP interface) Service PC. This allows a service
PC to prevent switching control center switch requests. Trial switches can be per-
formed as well. Service is always run for the entire field device.

There are several sources for controlling commands, where each source has its own
priority:

1. Controlling or servicing "locally"

2. Controlling or servicing "remotely"

3. Control center

4. Local command selection, e.g. automatic time function (lowest priority)

Theoretically, a remote service intervention can be seen as an extended manual de-
vice.

As opposed to local service interventions, during remote service interventions, the
device is unable to determine the end via the door contact. This is why OCIT pro-
vides for a limited-time command to set service mode.

Path: ./. (only one instance per field device)

RemoteService (0:208)

RemoteService

METHOD Name Description

0 Get

Output parameters

VorgangsNr :
SYSJOBID

Identifier for the process that requested the remote servicing,
or ZERO if no remote servicing is active.

EndZeit
:ZEITSTEMPEL_U
TC

Time indicating how long remote servicing is active. End-
Time==0 if no servicing is active.

ServiceGrund Indicates why servicing was requested.

16 StartService This allows a service PC to request control over a device. The
device may only issue control rights for a single access at any
one time. If remote servicing is already active, the method
returns ACCESS_DENIED.

Input parameters

EndZeit
:ZEITSTEMPEL_U
TC

Time indicating how long remote servicing is active. End-
Time==0 if no servicing is active.

VorgangsNr :
SYSJOBID

Identifier for the process that requested the remote servicing,
or ZERO if no remote servicing is active.

ServiceGrund Indicates why servicing was requested.

Output parameters

OCIT-O_Basis_V3.0_D01 Page 27 of 67

RemoteService

METHOD Name Description

RetCode OK: Entry was created.
PARAM_INVALID, INTERVALL_INVALID,ACCESS_DENIED

17 EndService A service PC returns the control rights with the command
EndService. After that, the device again considers control
center switch requests. In exceptional cases it may be neces-
sary to set this command from the control center.

Output parameters

RetCode OK, (even if remote servicing was not ac-
tive)ACCESS_DENIED

4.1.4.1 Direct external access to the field device

Direct external access to the field devices via dial-up connections/networks or the
local service interface are the responsibility of the field device manufacturer. They
are implemented for each project or manufacturer specifically.

If this kind of direct external access is established to the field device in addition to the
connection to the control center, it is critical that the OCIT-compatible devices meet
the following:

Start of access: Message MAINTENANCE_ON to the control center.

End of access: Message MAINTENANCE_OFF to the control center.

For direct dial-up connections, it is possible that the control center becomes discon-
nected during the time of direct access to the field device, and as a result a connec-
tion fault is detected. This fault state can be corrected after access is ended because
the field device sends an appropriate message to the control center.

4.2 Messages and measurement values (archives)

In OCIT outstations, messages and measurement values are stored in the archives
of the field devices. The methods that the control center uses to query these ar-
chives are the same for both messages and measurement values. OCIT outstations
combines measurement value and message archives under a common interface.

OCIT-O_Basis_V3.0_D01 Page 28 of 67

4.2.1 Properties of the archives

Selected data and messages for the field device are collected in archives. OCIT-O
provides the following elements for this purpose (for details, see sect. 4.2.9):

• A general archive interface, which allows archives to be easily managed,

• standard and optional archives for messages,

• measurement value archives that can be defined by the control center during
runtime. In order for messages to maintain a defined storage depth, OCIT out-
stations provides separate archives for messages.

The archive interface for messages and measurement values has the following ben-
efits:

• Measurement values can be added without requiring that extensions are made
in OCIT outstations.

• Data is transmitted in compressed form.

• Depending on the manufacturer, there is the option to define additional ar-
chives.

• Measurement values can be retrieved or archived several times.

• The number of messages that can be entered into the archive can be in-
creased.

• Depending on the manufacturer, there is an option to expand individual mes-
sages (with new message parts).

• It is easy to filter out the original message even if a message was expanded
with new message parts.

• Updates to the control center with new messages keeps the control center fully
updated.

• The control center can read the entirety of the archive that still exists.

• There is the option to incrementally transmit to control center 1 while at the
same time reading the entire content of control center 2 (e.g. system access).

• Data loss does not occur until an overflow in the cache, not because of a
transmission fault alone.

• The control center can access the most recent entry (for current status when a
connection is being established).

OCIT-O_Basis_V3.0_D01 Page 29 of 67

4.2.2 The archive interface

Messages and measurement values are processed in a common interface. The data
structures and the defined functions of the interface are structurally identical for
messages and measurement values.

Messages and measurement values are stored in "lists". There are several lists in
the field device, which store different data. The "tasks" define which data is stored,
which are then stored in the corresponding list. This configuration can be read during
operation. There are pre-defined lists that are unalterably defined by the device
manufacturer and dynamic lists that can be configured by the control center during
operation. Up to 256 different tasks are possible for each list.

Each list has its own buffer in which the dynamic data is stored. The buffer is de-
signed as a ring buffer, which is set to overwrite the oldest sets each time. The size
of the ring buffer can be configured, however it cannot be changed while measure-
ment values are being registered.

A ring buffer consists of a "second frame". It is possible to create multiple second
frames during the same second. However, a second frame is always characterized
by the time (to the second) for which the second frame is created. There are only
second frames for the times during which data was stored. A second frame only con-
tains so-called "task frames". A task frame stored the dynamic data that were re-
quested by a task. There are different structures of task frames for messages and for
measurement values. Both messages as well as measurement values are stored
entirely in a secondary frame. Multiple measurement values and messages are pos-
sible for each second frame. Normally, messages and measurement values are
stored in different lists.

The basic workflow looks as follows: The field device stores new data in its ring buff-
er but does not automatically transmit the data to the control center. The data is only
transmitted to the control center upon request by it. This makes it possible to store
the data to the second, however they can also be transmitted in larger time intervals.
In addition, the control center can be notified (with events) if the buffer exceeds a fill
level that was defined by the control center. In addition, events can be triggered if
certain scenarios occur (e.g. if a lamp has burned out). Data is retrieved via BTPPL
method calls that are protected not only by PPP and TCP but also via a 16-bit
checksum (Fletcher) and can optionally also be protected by a 160-bit checksum
(SHA-1).

OCIT-O_Basis_V3.0_D01 Page 30 of 67

Figure 2: Schema of the archive interface

4.2.3 Elements of the archive interface

The archive interface is broken down into the following abstract elements:

• A List of managed tasks and the corresponding dynamic values, such as
measurement values or messages. Which values are recorded and saved is
defined by the tasks. There are static lists that can be redefined and dynamic
lists that can be re-configured by the control center.

• Tasks belong to a list and define, which dynamic values should be stored. A
task consists of one or more task elements.

• Task elements refer to the objects (process variables) and include the infor-
mation about which values of these objects are recorded. Normally, a type of
task element refers exactly to a type of OCIT outstations object, the data of
which is recorded. However, it is possible that a process variable of more than
one task element is used (in different lists). Each element in OCIT outstations

for which a task element exists can be used as a data source.

• The task frame is the result of a task. Even a task that consists of several task
elements will always generate exactly one task frame.

OCIT-O_Basis_V3.0_D01 Page 31 of 67

• The dynamic data is stored in second frames. A second frame includes, for
example, a series of measurement values in the form of task frames that were
created in the same second, or all message parts that belong to a message.

• A special task frame is the message task used to record messages. OCIT

compliant messages consist of a main message part and 0 - n additional

message parts (optional message parts). The main message part determines
the message's semantics. This is why a message is broken down into message
parts, so that different manufacturers can expand upon an already existing
standard message. The grouping illustrates that the message parts belong to-

gether semantically. A message part consists of an identifier and a set of pa-
rameters, which defines the message precisely. The identifier is made up of the
manufacturer identifier (member number) and the type identifier (OType).

OType number of the lists in the control center, Member=0:

OType Name Path (from field device)

400 List List(UBYTE)

401 EvList EvList

402 Task List(UBYTE)/TaskNumber(UBYTE)

405 Message task List(UBYTE)/TaskNumber(UBYTE)

430 TaskElement List(UBYTE)/TaskNumber(UBYTE)/TENr(UBYTE)

All objects—except the event—support the standard function 'Get'. They do not sup-
port the function 'Set'. The returned parameters are described in more detail in the
XML file.

4.2.4 List

A list has two aspects: Which tasks exists and as such, which dynamic data is trans-

ferred, is stored in a static part. There is a checkword (list version) for these tasks,
which is reset for every time the tasks are changed, thus making it easy to check
whether the transmitted dynamic data and the task supply are compatible with each
other.

The dynamic part of the list (ring buffer) stores the data that accumulates in "second
frames". Then, this data can be retrieved by the control center. There is the option to
retrieve data more than once, because they remain stored even after they have been
retrieved. As such, even system access points, for example, can use the current
measurement values. System access points are not set up to delete jobs or to regis-

ter themselves at the device as an event destination (device is not multi-master ca-
pable). The data is stored in a ring buffer, in which the old values are simply overwrit-
ten.

In addition, the control center also has the option to have an event sent if a fill-level
configured in advance has been reached. In addition, there is an option to specify
how much space should be used for a ring buffer of a list.

The lists have fixed addresses (absolute path to the device, irrespective of relative
intersections) and transmit data to all relative intersections.

OCIT-O_Basis_V3.0_D01 Page 32 of 67

Each second frame has a timestamp (to the second) and a position number. The
position number is needed to be able to differentiate between several elements with
the same timestamp. The same position number must not appear in the ring buffer of
the same list twice, however gaps are allowed (for example, 10 can be followed by
50). There is no need to store the position numbers in the device. Instead, a 32-bit
memory address or a file position can also be used. Of course, the ring buffer must
be large enough to ensure that it can accept more elements than the maximum
number that can be generated per second. (The tuple time/position may only appear
once per list).

It can be defined per list, whether or not queries must be secured when submitted.
This is necessary, because on the one hand a secure transmission system resource
is needed for very large data volumes (online measurement values), yet on the other
hand certain lists are relevant to security.

Summary:

• The checkword allows a consistency check between the list configuration
and retrieved data.

• The list instances are pre-defined but not started up.

• The lists can be given a fixed address (path absolute to the device, irrespec-
tive of the relative intersection).

• The list manages data frames.

• The data is retrieved via the list's interface.

• The list includes a fill level, for which, optionally, the list sends an event to
the control center (fill level in %).

• The list does not have any fixed property that defines how much space is
reserved for the frames.

• What can be defined is how the system must behave in the event of overfill-
ing (stop or overwrite).

• The maximum size of the ring buffer is a property of the list. The list or the
corresponding tasks prevent defining tasks with second frames that are
larger than the ring buffer.

• Each list has a ring buffer of second frames that can be queried. A queried
second frame is not deleted, but instead remains in the ring buffer until it is
overwritten.

• Each second frame has a timestamp (to the second) and a position number
(unique for the entire ring buffer).

• The data of one or several tasks is stored in a second frame.

• It is possible that multiple second frames exist for the same second. The da-
ta for a taks within the same second is always within the same frame.

• It is possible for the same task number to appear multiple times in a single
second frame (especially where messages are concerned).

• It can be defined per list, whether or not queries must be secured when
submitted.

OCIT-O_Basis_V3.0_D01 Page 33 of 67

• Lists may trigger events in one different field device (usually the control cen-
ter). An event is a method call of the EvList object. An event is triggered if
there is a significant change to the status of the list.

Figure 3: Schema of a list

4.2.4.1 Transmission format

The field device only saves elements chronologically in the ring buffer for each list. It
does not save if elements were already read by the control center.

Each entry in the ring buffer (second frame) has its own timestamp (UTC), that is,
with a second range. It is possible that several elements with the same timestamp
exist within a list. In the event of a time correction, they may also show backward
skips. The device notifies of time corrections with an operating message (4.2.12).
This allows the control center to re-establish the chronological context of the data.

Each second frame consists of a list of task frames. The structure of a task frame
depends on the type (member, OType) of the task frame (caution: this Mem-
ber/OType combination of the task frame is not the message number and is not
transferred). Task frames for messages include variable parameters and among oth-
er things the Member/OType combination of the message (that is also transmitted).

Each second frame can be uniquely identified within a list by its timestamp and a
position number (within the ring buffer). The position number must be unique within
the ring buffer, but it may have gaps. Conceivable as a position number, for example,
is a file-offset within a file in the field device or the storage address for the element in
the memory. This makes it possible to define the position number as ui4. The posi-
tion number must only include the value range 0x0 to 0xfffffffe, thus it cannot include
0xffffffff.

If a list of second frames is transmitted from the field device into the control center,
you also transmit the timestamp as well and the position number of the previous el-

OCIT-O_Basis_V3.0_D01 Page 34 of 67

ement and the timestamp and position number of the last second frame that was
transmitted.

4.2.4.2 Methods for List

Generally, all methods that are run on the list are authenticated. The only exception
is GetSFSince, because GetSFSince does not make any changes to the list itself.
GetSFSinceEvent is always transmitted authenticated, however an authentication is
not needed in the answer, if AuthenticateAnswer is set to 0.

Rule: Important data such as operating messages are authenticated; large da-
ta volume that is not pertinent, such as measurement values, are not authen-
ticated to benefit of the performance.

A task with the number 0 exists implicitly in each list. With it, the messages "Sus-
pend", "Unsuspend", "StartTask" and "StopTask" are added to the list. These four
messages are not inserted in the standard message archive.

The message "time skip" is inserted into all lists with task 0.

List (0:400)

List

METHOD Name Description

100 GetOldest Read oldest list element

Output parameters

RetCode OK: Oldest second frame (SF) delivered correctly

NO_SF: List does not contain any second frame

PosNr Position number of the delivered SF

Listenversion Version identifier (checkword) that is changed by the field
device each time a task is changed. The version number is
also returned to the list during startup, allowing the control
center to determine if a change took place.

As can be seen based on the data structures directly, the
version number for the list is not the version number for the
second frame and as such it is not stored in the list. So, if
the task is changed for a stopped task, the user of the con-
trol center is himself responsible for the side effects.

Sekundenframe Oldest second frame (caution: This frame contains a list
made up of task frames!)

101 GetYoungest Read youngest list element

Output parameters

RetCode OK: Youngest second frame delivered correctly

O_SF: List has no second frames at all

PosNr Position number of the delivered SF

OCIT-O_Basis_V3.0_D01 Page 35 of 67

List

METHOD Name Description

Listenversion Version identifier that is changed by the field device each
time a task is changed. The version number is also returned
to the list during startup, allowing the control center to de-
termine if a change took place.

As can be seen based on the data structures directly, the
version number for the list is not the version number for the
second frame and as such it is not stored in the list. So, if
the task is changed for a stopped task, the user of the con-
trol center is himself responsible for the side effects.

Sekundenframe Youngest second frame (caution: This frame contains a list
made up of task frames!)

102 GetSFSince Read second frames from transmitted time/position number
in the task of their creation. Only second frames are re-
turned that are entered in the ring buffer after this element
(not accounting for time conversion, these are only the
younger elements. Where time conversions come into play,
the output is definitely based on the task of entry, not based
on the timestamp)

If there is no second frame to a timestamp/position number,
this method starts from the first element entered into the
ring buffer that has a UTC timestamp "younger" than the
transmitted time (and then continues in the task of the en-
try). If this does not exist either, the method supplies:

RetCode==NO_SF, if pulled up successfully,

RetCode== SF_FOLLOW or RetCode==SF_NOFOLLOW
is supplied.

This method does not make any changes to the current fill
level, nor to the fill level that triggered the list.

Input parameters

Zeit :
ZEITSTEMPEL_UTC

Time from which elements are read

PosNr Position number from which reading begins. The first ele-
ment to be supplied is the element following Time.PosNo.
ZeroValue=0xffffffff The position number 0xffffffff must not
occur.

MaxAnzahl Maximum number of elements to be read

Output parameters

RetCode SF_FOLLOW: Second frames are supplied correctly and
other second frames, which were entered after these, are in
the list

SF_NOFOLLOW: Second frames are supplied correctly and
no subsequently entered second frames are in the archive

NO_SF: List does not contain second frame that fulfills this
condition.

OCIT-O_Basis_V3.0_D01 Page 36 of 67

List

METHOD Name Description

AbZeit :
ZEITSTEMPEL_UTC

Timestamp of the second frame that is entered immediately
prior to the transmitted second frame in the ring buffer or 0
if no such second from is in the ring buffer.

AbPosNr Position number of the second frame that is entered imme-
diately prior to the transmitted second frame in the ring
buffer or 0 if no such second frame is in the ring buffer.

If the system reads with GetSFSince multiple times one
time after the next and no elements were overwritten, the
'FromTime of this call" == Time of the last secondary frame
of the last call" and "FromPosNo of this call" == 'PosNo of
the last second frame of the last call'.

If there is no more older element to the first sent one,
FromPosNo is undefined and FromTime === 0.

BisZeit:
ZEITSTEMPEL_UTC

Timestamp of the last element sent in the following, thus
from element [quantity-1].

BisPosNr : ui4 Position number of the last element sent in the following,
thus from element [quantity-1].

Listenversion Version identifier that is changed by the field device each
time a task is changed. The version number is also returned
during startup, allowing the control center to determine if a
change took place.

As can be seen based on the data structures directly, the
version number for the list is not the version number for the
second frame and as such it is not stored in the list. So, if
the task is changed for a stopped task, the user of the con-
trol center is himself responsible for the side effects.

Anzahl Quantity of following second frames

Sekundenframes Read messages (warning: Each message again includes a
list made of message parts)

103 GetSFSince-

WithEvent

GetSFSinceWithEvent is a combination of the methods
GetSFSince() and SetEvent(). The parameters LastTime
and LastPosNo of SetEvent are the last second frames
returned by GetSFSince.

This method may only be called up by the device registered
as EventDestination (control center).

Note: This command is not intended for system access
points. The control center must intercept commands of this
kind and acknowledge with a negative response
(ACCESS_DENIED), if they are routed via the control cen-
ter. Commands that are sent to the field device directly are
detected based on the source IP address and intercepted
there.

Input parameters

Zeit: utc Time from which elements are read

OCIT-O_Basis_V3.0_D01 Page 37 of 67

List

METHOD Name Description

PosNr Position number from which reading begins. The first ele-
ment to be supplied is the element following Time.PosNo.

MaxAnzahl Maximum number of elements to be read

Fill Fill level in % at which the event is triggered.
See SetEvent.

AuthenticateAnswer 0 (FALSE): The respondent does not need to be authenti-
cated (no SHA-1 checksum needed). If it is still authenticat-
ed, the checksum must be correct.
1 (TRUE): The respondent must be authenticated.

Output parameters

RetCode SF_FOLLOW: Second frames are supplied correctly and
other second frames, which were entered after these, are in
the list

SF_NOFOLLOW: Second frames are supplied correctly and
no subsequently entered second frames are in the archive

NO_EVENT, if the event cannot be entered for whatever
reason

NO_SF: List does not contain second frame that fulfills this
condition.

ACCESS_DENIED Access not allowed because it was not
triggered by EventDestination.

AbZeit Timestamp of the second frame that is entered immediately
prior to the transmitted second frame in the ring buffer or 0
if no such second from is in the ring buffer.

AbPosNr Position number of the second frame that is entered imme-
diately prior to the transmitted second frame in the ring
buffer or 0 if no such second frame is in the ring buffer.

If the system reads with GetSFSince multiple times one
time after the next and no elements were overwritten, the
'FromTime of this call" == Time of the last secondary frame
of the last call" and "FromPosNo of this call" == 'PosNo of
the last second frame of the last call'.

If there is no more older element to the first sent one,
FromPosNo is undefined and FromTime === 0.

BisZeit:
ZEITSTEMPEL_UTC

Timestamp of the last element sent in the following, thus
from element [quantity-1].

BisPosNr Position number of the last element sent in the following,
thus from element [quantity-1].

OCIT-O_Basis_V3.0_D01 Page 38 of 67

List

METHOD Name Description

Listenversion Version identifier that is changed by the field device each
time a task is changed. The version number is also returned
during startup, allowing the control center to determine if a
change took place.

As can be seen based on the data structures directly, the
version number for the list is not the version number for the
second frame and as such it is not stored in the list. So, if
the task is changed for a stopped task, the user of the con-
trol center is himself responsible for the side effects.

Anzahl Quantity of following second frames

Sekundenframes [] :
Sekundenframe

Read messages (warning: Each message again includes a
list made of message parts)

104 SetEvent Assigns the list if the specified fill level "Fill" is exceeded to
call the method EvList::OnFull() in the specified device (typ-
ically in the control center). The transmission parameters
LastTime and LastPosNo mark the starting position at
which to determine the current fill level.

Every time the fill level is exceeded after entering a second
frame, the OnFull method (4.2.4.3, ArchiveEvent object) is
called up.

If a value of > 100 is entered for a fill level, no new event is
triggered.

At a fill level of 0, the event is triggered after each new en-
try.

Input parameters

LastTime Time when the last element was retrieved

LastPosNr Position number of the last element that was retrieved

Fill Maximum fill level at which the EvList::OnFull is triggered.

Fill=0 → trigger OnFull after each entry

Fill>100 → never trigger OnFull

Output parameters

RetCode OK if the event can be entered;

NO_EVENT, if the event cannot be entered for whatever
reason

ACCESS_DENIED Access not allowed because it was not
triggered by EventDestination.

105 Start Starts the list, i.e. the tasks go live. Even the aggregation of
AEAggragat starts.

The ring buffer is deleted as soon as the list is started. In
some lists, depending on the manufacturer, it may be that it
cannot be stopped (and started).

Input parameters

OCIT-O_Basis_V3.0_D01 Page 39 of 67

List

METHOD Name Description

 None

Output parameters

RetCode OK: Data collection started

NOT_POSSIBLE: In principle, the list cannot be started.

NOT_INACTIVE: Data recording has already started (list
was not deleted)

ERROR: Command cannot be executed (tasks configura-
tion is incomplete)

Listenversion Version number that is also returned for GetSFSinceXXX.

106 Stop Stops data recording of the list. After the list has stopped, it
is still possible to retrieve the ring buffer.

In some lists, depending on the manufacturer, it may be that
it cannot be stopped (and started).

Input parameters

 None

Output parameters

RetCode OK: List is stopped, however is also returned for a list that
has already stopped.

NOT_POSSIBLE: In principle, the list cannot be stopped.

ERROR: Command could not be executed.

107 Reset Stops the list. Removes all of the tasks added with AddTask
from the list. The ring buffer is deleted. Sets the
EventDestination to the control center. If an EventDestina-
tion was entered, an Onlinevalidate is sent to the old
EventDestination.

Input parameters

 None

Output parameters

RetCode OK

RetCode!= OK -> Command could not be executed.

ListenversionAlt,
ListenversionNeu

ListVersion before Reset
ListVersion before Reset

OCIT-O_Basis_V3.0_D01 Page 40 of 67

List

METHOD Name Description

108 AddAuftrag Adds a new task to the list. OCIT outstations only requires
that new tasks can be added into a stopped list. It is up to
the manufacturer, whether to implement this for already
started lists. The new list version is not added until the new-
ly added task has started.

For a stopped list, the new task does not start, as long as
the list has not started. The task is started once the list
starts.

Once a list has started, the new task does not start until it is
started with a start command for the task.

 Input parameters

Member

OType

Provides the type of the task to be added. The domain
specified must be derived from the task.

Output parameters

RetCode OK

PARAM_INVALID task type specified with Member/OType
is unknown, task was not set up.

NOT_INACTIVE The task must not be started in task to
execute this method

BUFFER_TOO_SMALL: Supplied if the second frame is so
large that fewer than four entries can fit in the ring buffer

NOT_POSSIBLE: Too many tasks (a maximum of 255
tasks is possible)

AuftragsNr Task number for the newly added task if
RetCode ==OK. The new task can be addressed with the
path List()/TaskNo().

ListenversionAlt,
ListenversionNeu

ListVersion before AddTask
ListVersion before AddTask

109 SetEventDestina-

tion

Sets the destination of all events in this list. Once an
EventDesitnation is set, this method trigger the Event
OnlineValidate for the old event destination. Warning:
EventDestination is set first and the event is then called up.
The
EventDestination is not even withdrawn if Event OnInVali-
date returns with a timeout error! Once events are set, they
stay set.

Input parameters

ZNr, FNr CNr/FNr for the device that should receive the traps.

Output parameters

RetCode RetCode! =OK -> Command could not be executed.

OCIT-O_Basis_V3.0_D01 Page 41 of 67

List

METHOD Name Description

ListenversionAlt,
ListenversionNeu

ListVersion before SetEventDestination
ListVersion after SetEventDestination

110

SetSize Sets the size of the ring buffer in bytes. The device deter-
mines how large the list can really be and returns the set
value. The size must be set while the list is offline and de-
letes any entries still available in the list.

The device attempts to approximately meet the size of the
buffer.

Input parameters

Persistenz : UBYTE Defines which parts of the list should be kept after a power
outage:

• None
NoneThe entire list is reset to default values after a
power outage.

• Tasks
The list tasks remain, the data (content of the ring
buffer) is lost. The list is refilled automatically after a
power outage.

All
Both the list tasks as well as the content of the ring buffer is
retained through a power outage.

ListeSizeP Minimum size of the list desired as a percentage of the re-
maining available storage. A size is chosen that results in
more bytes, but no more than 100%. Other lists are not
reduced in size.

Output parameters

RetCode OK: The command was executed

NOT_INACTIVE: The list must not be started.

CurrentPersistenz Persistence set for this list.

CurrentSizeB Size of the list in bytes as set, or rather size of the current
list if no change is possible.

CurrentSizeP Size of the list as a percentage of the storage available prior
to being called up.

ListenversionAlt,
ListenversionNeu

ListVersion before SetSize
ListVersion after SetSize

111 SetOverwriteOnFull Defines the behavior if ring buffer is full.

Input parameters

OverwriteOnFull If set (true), the list overwrites the old data frames (ring
buffer). Otherwise, the list stops. The default setting after
reset is true (ring bugger).

Output parameters

OCIT-O_Basis_V3.0_D01 Page 42 of 67

List

METHOD Name Description

RetCode OK,

NOT_POSSIBLE if the device does not support this setting.

112 Suspend Halts list recording without actually stopping it. The ring
buffer remains. Once the list is suspended, the operating
message Suspend is saved in the list.

Input parameters

 None

Output parameters

 OK: The command was executed.

113 Unsuspend If the list was halted with Suspend, this "Suspend" is with-
drawn and the operating message Unsuspend is saved in
the list's ring buffer.

4.2.4.3 Event handlers for lists in the control center

There is one OBJTYPE Evlist instance for all lists of a field device in the control cen-
ter. An event is equal if the destination (control center), method and input parameters
match.

The field devices does not send the next event until it has received an acknowl-
edgement to the previous equal event or once it is again activated (with
List::SetEvent(), List::GetSFSinceWithEvent(), task::ActivateEvent()). This makes a
flow control possible for events accounting for the duration and route of the trans-
mission as well as for processing the event by the control center. The transmission
speed of the event adapts to the available bandwidth and the current transmission
volume.

The event handlers are called up in the following manner:

EvList (0:401)

EvList

METHOD Name Description

200 OnFull Is called up by the field device in the EventDestination
(typically the control center) if the fill level has been
exceeded.

Input parameters

ZNr

FNr

Sender field device

Liste List number of the list for which the fill level was ex-
ceeded.

OCIT-O_Basis_V3.0_D01 Page 43 of 67

EvList

METHOD Name Description

Output parameters

RetCode Is ignored. Only necessary to receive the send con-
firmation for the flow control. The user function should
always return OK.

201 OnInvalidate Is called up by the field device in the EventDestination
(typically the control center) if another event destina-
tion is set.

Input parameters

ZNr

FNr

Triggering field device

ListenNr List of the event that was reset.

ZNrNeu

FNrNeu

The device numbers of the new event destination.
This may also be identical to the device number of the
querying device.

Ausgabeparameter

RetCode Is ignored. Only necessary to receive the send con-
firmation for the flow control. The user function should
always return OK.

202 OnInsert Is called up by the field device in the EventDestination
(typically the control center) if the dynamic data of a
started task was entered.

Input parameters

ZNr

FNr

Triggering field device

ListenNr List of the event that was reset.

AuftragNr Task that triggered the event.

Output parameters

RetCode Is ignored. Only necessary to receive the send con-
firmation for the flow control. The user function should
always return OK.

203 OnNetzAus Is called up by the field device in the EventDestination
(typically the control center) if a power outage is de-
tected.

Input parameters

ZNr,

FNr

Triggering field device

Vorgangsken-
nung:SYSJOBID

Operation identifier of the fault, identical to operation
identifier of the corresponding PowerOFF message in
the default message archive

OCIT-O_Basis_V3.0_D01 Page 44 of 67

EvList

METHOD Name Description

Ausgabeparameter

RetCode Is ignored. Only necessary to receive the send con-
firmation. The user function should always return OK.

204 OnTransaction-

StateChanged

Is called up by the field device in the EventDestination
of the transaction (typically equal to the VD server) if
the state of the transaction has not changed, i.e. once
the status transition has occurred.

Input parameters

Ref2Device: ZNR_FNR Triggering field device

TransactionRef: BaseOb-
jType

Reference to the transaction for which the state was
changed.

OldState:
TRANSACTION_STATE

The old state of the transaction.

NewState:
TRANSACTION_STATE

The new state of the transaction.

Output parameters

RetCode Is ignored. Only necessary to receive the send con-
firmation for the flow control. The user function should
always return OK.

Note: The list::SetEvent() in the traffic signal controller must only be called up by the
EventDestination (control center) currently set at the traffic signal controller. If the IP
address needs to determined for testing purposes, you will find ZNr, FNr of the
EventDestination in the header of the RemoteDevice. A new event destination may
be set for any randomly defined RemoteDevice in the traffic signal controller.

OCIT-O_Basis_V3.0_D01 Page 45 of 67

4.2.5 Second frame/Task frame

Each second frame consists of one or more list of task frames. A task frame consists
of one task number (1 byte) as well as the dynamic data that was generated by the
task. For measurement values, this data normally only contains the attribute data, for
messages the Member/OType identifier is also sent that represents the "message
number" of the message part. Optionally, the manufacturer can specify a format
string for each message part in the TYPE file, with which the control center converts
the message part into a legible format. If the format ring is missing, the control center
outputs the data in an arbitrary format.

For messages, the parameter set that describes the message more precisely follows
the Member/OType identifier. The structure and the length of the parameter sets
depend on the Member/OType identifier. In order to be able to skip unknown mes-
sage parts, a 2-byte length of the parameter set is saved for each message part after
the Member/OType field.

R
in

g
p
u
ff

er

S
ta

n
d
a
rd

-

A
uf

tr
a
gs

-

fr
a
m

e

Auftragsnummer (UBYTE)

Inhalt je nach Auftrag

M
e
ld

u
n
g
s
-A

uf
tr

a
gs

fr
a
m

e
 (

1
 F

ra
m

e
 /

M
e
ld

u
n
g
)

e
n
ts

p
ri
c
h
t
e
in

e
r

M
e
ld

u
n
g

OType (USHORT)

Parameterlänge (USHORT)

SysjobID (ULONG)

Parameter je nach

Meldungsteil

S
e
ku

n
d
e
n
fr

a
m

e

UTC-Zeit (ULONG)

Anzahl Auftragsframes (UBYTE)

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

bzw.

Es ist möglich, dass

Listen unterschied-

lich große Frames

enthalten

Bit 0..6: 10ms Offset bei

Abtas tAenderung+ AuftragVergleich

Bit 7: verwendet beim

MWAuftragAbtas tAB

Die Länge der

Auftragsdaten wird

nicht übertragen, sie

ist durch den Auftrag

definiert.

A
uf

tr
a
gs

-

fr
a
m

e

A
uf

tr
a
gs

-

fr
a
m

e

A
uf

tr
a
gs

-

fr
a
m

e

Anzahl der Meldungsteile zur

Spezialisierung

Meldungsteile zur

Spezialisierung

Pro Meldungsteil:

Member

OType

Parameterlänge

SysjobId (nur bei Betriebszustand)

Parameter je nach Meldungsteil

Member (USHORT)

Auftragsnummer (UBYTE)

R
in

g
p
u
ff

er

S
ta

n
d
a
rd

-

A
uf

tr
a
gs

-

fr
a
m

e

Auftragsnummer (UBYTE)

Inhalt je nach Auftrag

M
e
ld

u
n
g
s
-A

uf
tr

a
gs

fr
a
m

e
 (

1
 F

ra
m

e
 /

M
e
ld

u
n
g
)

e
n
ts

p
ri
c
h
t
e
in

e
r

M
e
ld

u
n
g

OType (USHORT)

Parameterlänge (USHORT)

SysjobID (ULONG)

R
in

g
p
u
ff

er

S
ta

n
d
a
rd

-

A
uf

tr
a
gs

-

fr
a
m

e

Auftragsnummer (UBYTE)

Inhalt je nach Auftrag

M
e
ld

u
n
g
s
-A

uf
tr

a
gs

fr
a
m

e
 (

1
 F

ra
m

e
 /

M
e
ld

u
n
g
)

e
n
ts

p
ri
c
h
t
e
in

e
r

M
e
ld

u
n
g

OType (USHORT)

Parameterlänge (USHORT)

SysjobID (ULONG)

Parameter je nach

Meldungsteil

S
e
ku

n
d
e
n
fr

a
m

e

UTC-Zeit (ULONG)

Anzahl Auftragsframes (UBYTE)

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

bzw.

Es ist möglich, dass

Listen unterschied-

lich große Frames

enthalten

Bit 0..6: 10ms Offset bei

Abtas tAenderung+ AuftragVergleich

Bit 7: verwendet beim

MWAuftragAbtas tAB

Die Länge der

Auftragsdaten wird

nicht übertragen, sie

ist durch den Auftrag

definiert.

A
uf

tr
a
gs

-

fr
a
m

e

A
uf

tr
a
gs

-

fr
a
m

e

Parameter je nach

Meldungsteil

S
e
ku

n
d
e
n
fr

a
m

e

UTC-Zeit (ULONG)

Anzahl Auftragsframes (UBYTE)

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

Position
Sekunden-

frame

bzw.

Es ist möglich, dass

Listen unterschied-

lich große Frames

enthalten

Bit 0..6: 10ms Offset bei

Abtas tAenderung+ AuftragVergleich

Bit 7: verwendet beim

MWAuftragAbtas tAB

Die Länge der

Auftragsdaten wird

nicht übertragen, sie

ist durch den Auftrag

definiert.

A
uf

tr
a
gs

-

fr
a
m

e

A
uf

tr
a
gs

-

fr
a
m

e

A
uf

tr
a
gs

-

fr
a
m

e

Anzahl der Meldungsteile zur

Spezialisierung

A
uf

tr
a
gs

-

fr
a
m

e

Anzahl der Meldungsteile zur

Spezialisierung

Meldungsteile zur

Spezialisierung

Pro Meldungsteil:

Member

OType

Parameterlänge

SysjobId (nur bei Betriebszustand)

Parameter je nach Meldungsteil

Member (USHORT)

Auftragsnummer (UBYTE)

Figure 4: Schema: Seconds and task Frame

OCIT-O_Basis_V3.0_D01 Page 46 of 67

4.2.6 Task

A series of tasks belongs to each list, which defines which dynamic data will be
saved in the list. Each task belongs to exactly one list; no tasks are planned for mul-
tiple lists.

A task is uniquely identified within a list with a UBYTE (task number). Thus, the task
can be reached via the path Device/List()/task(). For dynamic lists, a task does not
exist from the start, but instead it must be created via the method "ListAddJob". For
static lists (e.g. messages), tasks already exist.

As opposed to the list, the task is a "virtual basic class", i.e. there is a series of spe-
cial orders that can be used in the lists, however not the basic task itself. Which task
type should be used is specified in the "List.AddJob". It is possible that not every list
accepts every task type.

Some task types may be compiled of task elements, in which details are then saved
defining which data should be transmitted. Other task types already include data im-
plicitly that are transmitted there, e.g. the task type for messages.

• There are different types of tasks.

• All tasks are ObjTypes under the relevant list (path: List()/Task())

• A task aggregates several task elements.

Each task implicitly includes a condition. Once the condition is met, the dynamic data
of the task is recorded and is stored in the ring buffer's second frame.

Each task may be started and stopped if necessary. Starting and stopping a task
only means that the values for this task were not recorded and were not entered in
the ring buffer. The list remains in operation with the other tasks. If necessary, the
task can be changed in stopped state. In order to be able to meaningfully analyze
the list, a task's start and stop as well as the halting of the entire list and time skips
are entered in the list as messages. Once the task has been changed and is then re-
started, the version number for the list is changed accordingly and the changed list
number are also then returned to the GetSFSinceXXX answers.

It is possible that tasks exist that cannot be started or stopped. This applies in partic-
ular to default message lists and their tasks. It is also possible that no new tasks can
be added to certain lists. Not all newly created tasks are started. A task cannot be
started separately if the list has not started. When the list starts, all tasks are started
(irrespective of whether they had started in the meantime or not). If the list is running,
the task is not stopped and started separately.

When starting a list and when starting a task while a list is running, a (new) list ver-
sion is always returned.

To ensure that no terminals can change the tasks of lists, the following applies: The
field device rejects all change orders that do not original from the EventDestination.

OCIT-O_Basis_V3.0_D01 Page 47 of 67

4.2.6.1 Methods for all tasks

Task (0:402)

Task

METHOD Name Description

119 ActivateEvent Activates or deactivates the event, which is triggered
when an element of this task finds its way into the list.

Input parameters

ActivateEventOnInsert 0: The event is deactivated

1: The event is activated

Ausgabeparameter

RetCode OK: The event has been successfully activated or
deactivated.

ListenversionAlt,
ListenversionNeu

ListVersion before ActivateEvent
ListVersion after ActivateEvent

120 AddElement General function for all tasks. Is called up when a new
element needs to be added to the task.

AddElement can only be called up if the task has not
yet been started. This way it is possible to query task
elements for "old" data as well.

Input parameters

Member

OType

Task element to be added

Output parameters

RetCode OK : is returned if the task element was able to be
added

NOT_POSSIBLE : is called up if the task type does
not allow any task elements, such as for messages,
R09 and AMLi

NOT_INACTIVE: is returned if theoretically task ele-
ments could be added, but the task has started.

PARAM_INVALID: is returned if the task element type
is unknown.

AENr Number of the task element that is being added. For
!= OK, the value is undefined.

ListenversionAlt,
ListenversionNeu

ListVersion before AddElement
ListVersion after AddElement

121 Start Starts the task if the list has started (and it is possible
to start the task separately). If the list has not started,
an error is returned.

Start triggers a message entry which may be entered
in the list itself.

Input parameters

OCIT-O_Basis_V3.0_D01 Page 48 of 67

Task

METHOD Name Description

 None

Output parameters

RetCode OK: Is returned once the task was successfully acti-
vated.

NOT_POSSIBLE: Is output if the task type (or the list)
does not allow the task to be started or the list is not
active.

Listenversion : USHORT New version number of the list that belongs to the
task. If RetCode !=OK, the value is not defined.

122 Stop Stops the task if the list has started (and it is possible
to stop the task separately). If the list has not started,
an error is returned.

Stop triggers a message entry which may be entered
in the list itself.

Input parameters

 None

Output parameters

RetCode OK: Is returned once the task was successfully start-
ed.

NOT_POSSIBLE: Is output if the task type (or the list)
does not allow the task to be stopped.

4.2.6.2 Message task

There is one message task per message degree (information, warning, error, critical
error) for each message list. A message list does not need to have all message de-
grees (and thus message task). The degree of the main message part defines which
"messages" are processed by which task.

For message tasks that by default are an integral part of archives, it is defined for
each archive specifically how messages are arranged in the Include and/or the Ex-
clude List.

The following statements apply to message tasks set up by a control center:

• After being set up by the control center, a message task is given Degree I

• All messages are in the Exclude List, i.e. by default the task does not generate
any message frames. After ResetMT, all message that correspond to the degree
of the task are added in the Include List.

The elements may be queried via the get function for the relevant task element. A
detailed lock and unlock is not necessary, because a list is only managed by one
participant.

OCIT-O_Basis_V3.0_D01 Page 49 of 67

Message task (0:405)

Message task

METHOD Name Description

120,
121,
122

AddElement,

Start,

Stop

See 4.2.6

130 IncludeMT Is called up if a main message part or a message part
of the OsActualVector should be added to this mes-
sage degree (and as such to the message task). If the
entry already exists in the Exclude List, it is removed
from the Exclude List.

Input parameters

Member

OType

Main message part

Output parameters

RetCode OK: Is returned once the message part was success-
fully entered.

NOT_POSSIBLE: Is output if the message parts can-
not be added onto or removed from this list.

PARAM_INVALID: The specified message part is not
a main message part known by the device (or an en-
tirely different object).

NOT_INACTIVE: Even though changes can be made
while the task is running without any problems, de-
pending on the manufacturer (and possibly depending
on the project), it is possible that no changes are
made in the Include and Exclude List once a list has
started. In this case, NOT_ACTIVE is returned.

ListenversionAlt,
ListenversionNeu

ListVersion before IncludeMT
ListVersion after IncludeMT

131 ExcludeMT Is called up if a main message part or a message part
of the OsActualVector should be removed from this
message degree (and as such from the message
task). As such, it is possible that a main message part
is not transferred.

If the entry already exists in the Include List, it is re-
moved from the Include List.

Input parameters

Member

OType

Main message part

Output parameters

OCIT-O_Basis_V3.0_D01 Page 50 of 67

Message task

METHOD Name Description

RetCode OK: Is returned once the message part was success-
fully entered.

NOT_POSSIBLE: Is output if the message parts can-
not be added onto or removed from this list.

PARAM_INVALID: The specified message part is not
a main message part known by the device (or an en-
tirely different object).

NOT_INACTIVE: Even though changes can be made
while the task is running without any problems, de-
pending on the manufacturer (and possibly depending
on the project), it is possible that no changes are
made in the Include and Exclude List once a list has
started. In this case, NOT_ACTIVE is returned.

ListenversionAlt,
ListenversionNeu

ListVersion before ExcludeMT
ListVersion after ExcludeMT

132 ResetMT The Include and Exclude Lists are reset to the de-
vice's internal default values.

Input parameters

 None

Output parameters

RetCode OK: Is returned once the message part was success-
fully entered.

NOT_POSSIBLE: Is output if the message parts can-
not be added onto or removed from this list.

ListenversionAlt,
ListenversionNeu

ListVersion before ResetMT
ListVersion after ResetMT

133 GetInEx The Include and Exclude list is returned. All of the
messages generated by the device can either be
found in the Include List or in the Exclude List for the
task.

Input parameters

 None

Output parameters

IncludeAnzahl: USHORT
IncludeMT[]: {Member,
OType}

List of the current Include message parts.

ExcludeAnzahl: USHORT
ExcludeMT[]: {Member,
OType}

List of the current Exclude message parts.

RetCode OK

134 SetDegree Apply a new message degree to the message task.
The Include and Exclude list is not changed.

OCIT-O_Basis_V3.0_D01 Page 51 of 67

Message task

METHOD Name Description

Eingabeparameter

Meldungsdegree New message degree

Ausgabeparameter

RetCode OK: The message degree is assigned successfully

ListenversionAlt,
ListenversionNeu

ListVersion before SetDegree
ListVersion after SetDegree

4.2.7 Message

There is no message per se in the common message and measurement value mod-
el. Instead, a MSGJobFrame is entered in a seconds frame for each message.
Breaking down messages into message parts makes it possible to expand default
messages.

If, for example, the default message "red lamp error" is to be expanded by XY, a XY
message part unique to the manufacturer is defined, which is transmitted every time
there is a "red lamp error" message. This provides an easy way to use filters to listen
for "red lamp errors" and to nonetheless perform expansions specifically for a manu-
facturer.

OCIT-O_Basis_V3.0_D01 Page 52 of 67

Figure 5: Schema on handling messages

4.2.8 Message part

Each message part is stored in a special task element. A task number is stored per
message part, which is not relevant to the message itself. The number of messages
parts and the Member/OType identifier that specifies the message number follow the
task number. The following length of the block of parameters is meaningful if a mes-
sage part is unknown in the XML file for some reason. In this case, all of the follow-
ing message parts and also all of the following second frames/messages can no
longer be evaluated. The minimum value of the length is 4 (length of the process
identifier; see sect. 2.4).

There is no need to give a process identifier to each message part; in cases such as
these, a 0 is transferred. The advantage of a field of this kind is that the control cen-
ter is by all means capable of finding entries belonging to a certain process even for
a wide variety of message types.

The parameters are different for each message and are defined in the XML file so
that they can be evaluated in the control center.

OCIT-O_Basis_V3.0_D01 Page 53 of 67

A 'message' always consists of exactly one main message part and 0 to n secondary
message parts.

Message parts that are only derived from the MESSAGE part (and not the main
message part) can only be used as secondary message part. Message parts derived
from the main message part can be both a main as well as secondary message part.

Exception to this rule: OsActualVector - it is entered as a main message in the oper-
ating state archive.

4.2.8.1 Category and severity of a message part

OCIT-Outstations defines a series of categories and severities for messages. The
category and the severity of the message can only be defined at the main message
part.

These categories and severities must be defined at two points: The default category
and the default severity of the message is saved in the XML file.

The following categories and severities are defined:

MessageDegree Description

Information (0) Has no impact on traffic.

Warning (1) Has no impact on traffic, however it should be processed.

Error (2) Has no significant impact on traffic.

Critical error (3) Has significant impact on traffic.

Message category Description

Other (0) None of the following categories.

Devices hardware (1) Devices hardware in general.

Target pattern error (2) Signal monitoring: Controller attempted to set a defective pat-
tern.

Actual pattern error (3) Signal monitoring: Lamp failure in the traffic lights / keys, a
pattern does not appear or appears where not intended.

User program (4) Traffic-related messages in user programs.

Transmission system (5) Communication to control center (it can be expected that criti-
cal errors in this category are not sent to the top immediately).

Operating system, (6) System error and miscellaneous.

Firmware (7) Non-traffic-related user programs.

Power supply (8) Messages relating to power supply.

Clock (9) Messages relating to time errors.

Detectors (10) Messages relating to detectors.

OCIT-O_Basis_V3.0_D01 Page 54 of 67

Message category Description

Operation status (11) Operation status messages.

4.2.8.2 Definition of message parts

Messages are defined as a list of MESSAGEPARTS, which are expanded
STRUCTDOMAINs. The message part is coded as IdData. A message part is
uniquely identified with the MEMBER and OTYPE values defined therein. The pa-
rameters of the message part are illustrated as components (DECL entries).

The only limitation relates to the size (and quantity) of elements. It is defined that the
number of atomic elements (numbers or strings) must not exceed 32. What this
means is that a parameter set, for example, can be made up of 32 simple domains
or, for example, of an array of 4 structured domains, with 8 simple domains each,
etc. As such, references are interpreted as structured domains, for which the trans-
mitted path elements are the elements of the structure.

The added information about the message type is defined by the manufacturer in the
relevant fields:

Formatstring: For each MESSAGEpart, a format string may be defined that briefly
characterizes the message. It is the responsibility of the control center to analyze this
format string (see sect. 4.2.8.4).

MessageCategory: The error locations or sender is restricted by the category.

MessageDegree: Degree of restriction of the traffic regulation function of the inter-
section controller

4.2.8.3 Structure of a message part

All message parts must be derived from the MSGPART MESSAGEPART. The
MSGPART is only a special STRUCTDOMAIN, for which three class attributes are
pre-defined: CATEGORY, DEGREE and FORMAT. CATEGORY contains the mes-
sage category as a number, DEGREE contains the MessageDegree as a number
and FORMAT contains the format string.

The question now is why a message part is derived at all, since a message is already
broken down into message parts. The part derived is also not supposed to be used
to derive semantically similar message parts from each other, but instead is meant
especially for those who do not like typing from having to write out the parameters
entirely every single time semantically different messages were declared.

If a message is supposed to be expanded, then not the message part should be de-
rived, but instead a new message part should be created with new parameters. This
applies in particular to OCIT-Outstations messages. It is not permitted to specialize
OCIT-Outstations message parts by way of derivation, because then the OCIT-
Outstations message part will no longer be visible in the control center!

Semantically, the derivation means: The basis message is not transmitted to the con-
trol center! A derivation does not include a semantic derivation. So, if a basic mes-

OCIT-O_Basis_V3.0_D01 Page 55 of 67

sage X exists and a message Y is derived from X, then transmitting Y does not mean
that X is also reported. Instead, new message parts must be defined

OCIT-Outstations defines a series of message part that are listed further below.

4.2.8.4 Format string for message parts

For details see the document "OCIT-O rules and protocols".

With OCIT, it is possible to expand the standard by manufacturer-specific objects
and methods. To also make these expansions available to different manufacturers
when using systems from a variety of manufacturers, these objects must be de-
scribed entirely as an xml file (<manufacturer>AddOns.xml). When doing so, the
nomenclature defined in OCIT-Standard must be used. This is especially relevant for
secondary messages. In order to have them automatically parsed from the control
center to be displayed and to be able to process them, making it possible to show
these messages on the screen in clear text, the format must be maintained exactly.
Only a short characterized text is defined for the message.

The message texts must be structured (format) as shown below:

Example text no. @Parameter 1@ arrived from intersection @parameter 2@.

The possible values and meanings of the parameters included in the message must
be described in an XML format.

4.2.9 Which archives exist?

The following entries are fixed in OCIT-Outstations:

In each field device:

1 The standard message archive for general fault messages such as errors

2 The Syslog archive for project specific information (general archive)

In order for messages and errors to maintain a defined storage depth, OCIT outsta-
tions provides separate archives for this.

The operating status archive is defined in the OCIT-O TSC with the number 0 and
must not be used for any other applications.

For additional archives, see OCIT-O TSC. Provided there are, among other things,
measurement values archives definable by the control center on the runtime. They
have the same structure as the archives above and consist both of a list of meas-
urement values tasks as well as one ring buffer each to absorb dynamic values.

OCIT-O_Basis_V3.0_D01 Page 56 of 67

4.2.10 Behavior in the event of a power outage

The ListAttribute CurrentPersistence gives details about the behavior in the event of
a power outage for all lists. The standard report archive remains intact (list task
structure and ring buffer content CurrentPersistence=All=2).

4.2.11 Transmission format of archive data (format of the message)

Each message part consists of one Member/OType identifier that characterizes the
message. Following the Member/OType identifier is the length of the parameter
block and the parameters belonging to the message.

4.2.12 Element descriptions for message archive

Note: The scope of functions was expanded as compared to the previous version
(definitions for "Fault cleared" and "Power OFF"). Note the version of the field device.

The general archive is transmitted per message as a list of message parts; in case of
many messages only the main message part arises. Complete implementation of the
error messages defined here is not required since some error types do not occur for
some TSSs. It is only required that those errors that occur are coded compatibly with
OCIT-Outstations. Additionally, manufacturer-specific or project-specific message
parts or messages are also possible.

Recommendation for message management in a control center:
Message forwarding for the purpose of troubleshooting / maintenance should as a
rule not be done based on error messages, but instead after checking the current
status of the device.

OCIT-O_Basis_V3.0_D01 Page 57 of 67

Main message parts OCIT-Outstations (Member = 0):

(MessageDegree I: Information, W: Warning, F: Fault, S: Serious fault)

O
T

y
p

e

S
h

o
rt

 n
a
m

e

M
e

s
s

a
g

e
D

e
g

re
e
 Description

60000 Fault cleared I This message appears if a fault was present and was
cleared. This main message part is only used for messages
for which no special clearance message is defined. Often-
times, the main message is also more precisely specified
with additional secondary message parts. In the process,
faults that were cleared can be listed as secondary mes-
sages.

60001 Power OFF S Shows that time when the power supply was switched off.
The message can be expanded with a manufacturer-
specific secondary message, which may also differentiate
the reason for the power outage.

60002 Power ON I Indicates "Power restored".

60003 System error S System error that has a major impact on the device's func-
tions.

60012 Communications
fault

W Is entered if communication to the control center is inter-
rupted.

60013 Communication ok I Is entered as soon as communication is again active.

60016 Clock faulty W Is entered if the clock is faulty. In this case, the device is
required to procure the time from the control center so as to
maintain synchronicity.

60017 Clock ok I The clock is ok again

60018 Maintenance ON I The control center is informed that the device is being ser-
viced.

60019 Maintenance OFF I The control center is informed that maintenance has ended.

60020 Door open W The door closing contact reports: The device's door is open.

(The message is only used if the door closing contact exists
in the specific project)

60021 Door closed I The door closing contact reports: The device's door is
closed.

(The message is only used if the door closing contact exists
in the specific project)

60026 Time skip F Is reported by the device if the time is corrected dramatical-
ly. The timestamp for the message has a new time.

Parameter:
Time difference = Tnew – Told in seconds (SLONG)

OCIT-O_Basis_V3.0_D01 Page 58 of 67

O
T

y
p

e

S
h

o
rt

 n
a
m

e

M
e

s
s

a
g

e
D

e
g

re
e

 Description

Time source {quartz, control center, DCF, GPS}

60028 Suspend I Reports when a list is halted per Suspend.

Parameter: List number.

60029 Unsuspend I Reports when a list is halted with Suspend and is then re-
started with Unsuspend

Parameter: List number.

60030 StartJob I Reports that a task was started

Parameter: List number, task number

60031 StopJob I Reports that a task was stopped

Parameter: List number, task number

60032 ResetList I Reports that a list was RESET.

Parameter: List number

Note: This message is only entered in the standard mes-
sage archive (1).

60033 SyslogI I System message information. Parameter is a string.

60034 SyslogW W System warning.

60035 SyslogF F System error

60036 SyslogSF S Critical system error.

60039 DoorOpenDevice-
Part

W Optional 1: Device part was opened. Message is logged as
an additional message part for the message Door Open.

60040 DoorClosedDe-
vicePart

I Optional: Device part was closed. Message is logged as an
additional message part for the message Door Closed.

60041 DoorOpenEVU-
Part

W Optional: EVU part was opened. Message is logged as an
additional message part for the message Door Open.

60042 DoorClosedEVU-
Part

I Optional: EVU part was closed. Message is logged as an
additional message part for the message Door Closed.

60043 DoorOpenCon-
trolElement

W Optional: Control element was opened. Message is logged
as an additional message part for the message Door Open.

60044 DoorClosedCon-
trolElement

I Optional: Control element was closed. Message is logged
as an additional message part for the message Door
Closed.

60101
-

Special message I Project specific special message number 1 to 8

1 OType 60039 to 60044: The option for the expanded "Door open messages" may require adjustments to the

hardware of the field devices.

OCIT-O_Basis_V3.0_D01 Page 59 of 67

O
T

y
p

e

S
h

o
rt

 n
a
m

e

M
e

s
s

a
g

e
D

e
g

re
e

 Description

60108 1 to 8

60109
-
60116

Special message
9 to 16

W Project specific special message number 9 to 16

60117
-
60124

Special message
17 to 24

F Project specific special message number 17 to 24

60125
-
60132

Special message
25 to 32

S Project specific special message number 25 to 32

The following parameters exist for messages Reset, Suspend and Unsuspend:

List number (UBYTE) Number of the list that was suspended

The following parameters exist for messages Start Task and StopJob:

List number (UBYTE) Number of the list for the task being processed.

JobNumber (UBYTE) Number of the task that was started or stopped.

OCIT-O_Basis_V3.0_D01 Page 60 of 67

5 Procedures Message and Measurement Values

5.1 List with predefined tasks

The following lists have predefined tasks that can only be modified:

• The standard message archive for general fault messages such as errors
(fault archive)

• The Syslog archive

If the lists are reset, the predefined, original tasks are re-established.

5.1.1 Objective

There is a "started" list from which the dynamic data can be retrieved.

5.1.2 Process

• Reset the list (400:107): The list's reset function has two meanings: For lists
that have not started, it creates lists internally and for lists that have already
started, it end the current run and resets the tasks and parameters to the de-
fault values. The result is in any event a freshly created list (ring buffer was de-
leted).

• Defining the list size (400:110): The manufacturer creates each list with a de-
fault size. The size of the buffer may be changed with the aid of the command.
It is possible that there is no way to change the size of some lists. In this case,
the current size is reported back.

• Defining tasks: Jobs are created in two steps. First, the type of task is created
in the list. To do so, the type is transmitted and the task number is returned as
a functions result. Then, the task object created in this manner is configured
with its own methods. Please be aware that the different task elements may in
some cases have different configuration functions.

• Creating a task (400:108): The task is created in the list. The function con-
tains the number under which the task can be triggered and under which the
dynamic data is stored in the ring buffer. There is an option to define for each
task (4xx:119) whether an event should be triggered in addition to the entry of
the task frame in the ring buffer.

• Configuring the task: Task configuration depends on the type of task. Meas-
urement values typically consist of several task elements. These task elements
must also be created.

• Creating a task element (4xx:120): Task elements are created for all task
types identically via function 120. The function returns the number of the task
element that was added and then allows the task element to be configured.

OCIT-O_Basis_V3.0_D01 Page 61 of 67

• Defining the event destination (400:109): For every list that is meant to trig-
ger events an event destination is assigned. Normally, this is the control center,
however a different destination may also be entered. All of the events for this
list are then sent to this destination. If no destination is entered, the control
center is used by default. Defining this triggers an event on the control center
in any event, so that the control center knows which lists are in use.

• Start of the list: The list is started with the command (400:105).

5.2 Changing lists

The objective when making changes to lists is so that the old data can remain in the
ring buffer without changing the ring buffer, allowing them to still be interpreted cor-
rectly. One must assume that a client only reads a partial area of data from the list.

Based on the above, the following design decision was derived: A task cannot be

deleted without stopping the list and restarting it (whereby the buffer is deleted

completely). It is possible, however, that a task is started so that the data vol-

ume is reduced.

If a list should be changed, the design merely provides for completely deleting the list
and then restructuring it. The critical UseCase to redefine the list. Instead of reading
the list and redefining it, the list can be entirely redefined from the start, which will
save the number of required call-ups.

The current configuration of the list can be determined using Get calls for the task
elements. The Get calls return the configuration.

5.3 Changing the degree (of significance) of individual messages

For message archives, one task is used per degree of significance (the so-called
MessageDegree). By default, all messages have one MessageDegree. The Mes-
sageDegree of a message is equal to the message degree of the main message
part. All other message parts for the message are irrelevant for defining the Mes-
sageDegree.

Now it may be necessary for the specific project to change the MessageDegree. For
this purpose, the functions IncludeMT and ExcludeMT exist for message tasks. In-
cludeMT is used to assign a message to a task, with ExcludeMT, the message is
removed from a task. A message part that exists in more than on task is written in
the ring buffer twice; a task that does not exist in any list is disregarded.

So, in order to change a degree, two commands are needed:

• With IncludeMT, the message is assigned to the new task (and thus the new
degree; more precisely: the identifier of the main message part is assigned to
the message).

• With ExcludeMT, the message is withdrawn from the task (and with it, the old
degree).

OCIT-O_Basis_V3.0_D01 Page 62 of 67

What needs to be done is to first re-assign the message and to then delete it so that
a message that occurs during the process is not lost.

If an element is removed from a task with ExcludeMT, it can be included back into
the task with IncludeMT. IncludeMT automatically deletes the message from the Ex-
clude list.

5.4 Retrieving data

Messages and measurement values are both retrieved in the same manner. Under
no circumstances is data transmitted from the field device into the control center
without being prompted. The events only notify a need for it to be retrieved. There
are two different requirements for retrieving data:

• Retrieving data continuously. Example: The control center retrieves operation
messages from the device in any event. It does not matter whether the data is
retrieved singularly or in blocks; they are continuously retrieved from the device
in any event (normal scenario for the communication control device - field de-
vice).

• Parts of the ring buffer are retrieved spontaneously if, for example, the mainte-
nance terminal accesses the messages or the measurement values in the ring
buffer (normally maintenance terminal - field device).

For an understanding of the sequence it is important to know: All elements that are
stored in a ring buffer of a list are defined uniquely with a combination position num-
ber/UTC time. The combination occurs no more than once in the same list. The
combination of position number and UTZ time is referred to as RIPID (Ring Buffer
ID) in the following.

5.4.1 Continuous retrieval of data

Only one device continuously retrieves data, which is normally from the control cen-
ter. The RIPID of the last element that was already retrieved is needed for continu-
ous retrieval. It is transferred to the function GetSFSince (or GestSinceWithEvent,
see below) as a parameter. The function returns the following values:

• A list of seconds frames [SecondsFrame1...SecondsFrameN]

• The RIPID of the "SecondsFrame0" that is "in front of" the SecondsFrame1 in
the ring buffer.

• The RIPID of the SecondsFrameN.

If no elements were lost, the returned RIPID of the SecondsFrame0 is equal to the
transferred RIPID. Otherwise, the elements would be lost.

It is possible that all new elements are read from the ring buffer with one call. In this
case, elements are still in the buffer and consequently, it is returned as RetCode

OCIT-O_Basis_V3.0_D01 Page 63 of 67

SF_FOLLOW. Once all elements have been read out of the buffer, the RetCode_SF-
NOFFOLLW is returned.

Function GetSFSinceWithEvent (400:103) is only intended for continuous retrieval.
For this function, not only is data retrieved in the same manner as for GetSFSince,
but in addition, an event is active that is triggered as soon as the list (starting with the
element returned last) exceeds a certain fill level. So, the start position for the Even-
tOnFull mechanism is highlighted.

5.4.2 Spontaneous retrieval of parts of the ring buffer

Normally, system access points and maintenance terminals trigger spontaneous re-
trieval of the ring buffer. Spontaneous retrieval is characterized by the fact that the
maintenance terminal does not "know" which element should be retrieved at which
position. However, the maintenance terminal does know the time range during which
the retrieval should take place. In order to be able to retrieve data from the time
range, we suggest take the following steps (TStart = start time of the time range; TStop
= end time of the time range).

• The maintenance terminal calls up the function GetSFSince, but with TStart -1
and a guaranteed invalid position, the zero value.

• GetSFSince returns a series of seconds frames. Because only the quantity of
the seconds frames is transferred, it can either be the last element at the time
<=TStop or > as TStop

• As long as the time is the last element <=TStop, additional seconds frames with
GetSFSince are retrieved from the ring buffer with the aid of the RIPID of the
last returned seconds frame.

The function GetSFSincWithEvent is off limits for the system access! This is only
permitted for those to which the EventDestination shows. There is no way to filter
results by values. If necessary, this can be done in the terminal itself.

5.4.3 Triggered data retrieval

There are three different types of triggers that can be sent from the lists in the field
device to the control center:

• OnFull once the fill level is reached

• OnInvalidate if the EventDestination changes

• OnInsert when entering certain dynamic values from started tasks.

The control center is responsible for reacting appropriately to events. The events do
not contain any attribute data, but instead "only" the sender.

Typically, the second frames must be retrieved from the relevant lists in the event of
OnFull and OnInsert.

OCIT-O_Basis_V3.0_D01 Page 64 of 67

The response for OnInvalidate strongly depends on the inner state of the control
center. It makes sense that the change to the EventDestination takes place for the
following events:

• The control center "failed" and its function is assumed by the replacement con-
trol center.

• Another device besides the control center created its own list and wants to use
it.

• The control center delegates treating certain lists to another device.

5.4.4 Retrieving a dataset immediately after it occurs

There are two different requirements that are both covered: The tasks are started if
only some tasks should be retrieved immediately from a list, e.g. for messages only
errors and critical errors. In this case, the event is triggered if the task writes a value
into the ring buffer.

If all data is always retrieved from a list after it was entered, the fill level of 0% can be
set as well. If this is the case, the event OnFull is triggered after each new dataset is
entered.

5.5 Determining a change in the list

You can determine whether the list was changed externally (via a system access
point, etc.) or if it was changed during a system fault:

The control center (or the maintenance terminal) must remember the list version for
each list. If there is any change in the list, i.e. if there is

• a change in the task,

• a change in the task element;

• a task element was added; and

• a task was added

the list version is changed. The list version is always increased to the next increment,
so after a reset as well. If the entire list information should be deleted after a power
outage, the version is installed with 0.

Warning: If tasks are merely started and stopped, the list version remains un-
changed.

The list version does not change until the stopped task has restarted.

OCIT-O_Basis_V3.0_D01 Page 65 of 67

5.6 Changing a task while it is running

Note: Pre-defined tasks cannot be changed.

The following steps must be taken to change the task while it is running:

• The task is stopped by the control center (4xx:122).

• The task is changed in the device. (The list version doesn't change here either)

• The task is restarted by the control center. If there is a change, the list version
in incrementally increased (4xx121).

As soon as the task has restarted, the list version is set to the latest version. The
dynamic values of this task do not need to be entered.

The field device rejects all change tasks that do not originate from the EventDestina-
tion so the control center does not need to worry about the lists being changed un-
expectedly by the maintenance terminals.

5.7 Synchronizing after a transfer fault

If a GetSFSince fails, simply repeat GetSFSince.

If a GetSFSinceWithEvent fails, the function GetSFSinceWithEvent must be repeat-
ed accordingly.

OCIT-O_Basis_V3.0_D01 Page 66 of 67

6 Figure

Abbildung 1: Ablaufschema zum Bespiel Lampenwechsel....................................... 16

Abbildung 2: Schema der Archivschnittstelle.. 30

Abbildung 3: Schema einer Liste .. 33

Abbildung 4: Schema Sekunden- und Auftragsframe... 45

Abbildung 5: Schema der Handhabung von Meldungen .. 52

7 Glossary

The explanations of the technical terms and abbreviations used in this document can
be found in “OCIT – O Glossary V3.0”.

 OCIT-O_Basis_V3.0_D01

 Copyright © 2018 ODG

