

O C I T D e v e l o p e r G r o u p (O D G)

OCIT
®
 is a registered trademark of the companies Siemens, SWARCO, STOYE and Stührenberg

Open Communication Interface for Road Traffic Control Systems

Offene Schnittstellen für die Straßenverkehrstechnik

OCIT Outstations

 Rules and protocols

OCIT-O_Protokoll_V2.0_A04

OCIT-O_Protokoll_V2.0_A04 Page 2 of 70 OCIT Developer Group (ODG)

OCIT Outstations

Rules and protocols

The document serves only the product specification and

none guaranteed features are assured. No responsibility for

faults in this document takes the ODG and in addition, the

right reserves for itself to change the contents of this

document any time and without advance notice.

Only the German document is obligatory

Document: OCIT-O_Protokoll_V2.0_A04

Issued by: OCIT Developer Group (ODG)

Contact: www.ocit.org

Copyright  2014 ODG. We reserve the right to make revisions. Documents with a more recent
version or revision level replace all contents of the previous versions.

www.ocit.org%20

OCIT-O_Protokoll_V2.0_A04 Page 3 of 70 OCIT Developer Group (ODG)

Table of contents

Specifications ... 8

1 Introduction .. 9

1.1 New or advanced functions in OCIT-O TSC V2.0 .. 9

1.2 System limits .. 9

2 Interfaces and system functions for OCIT outstations 11

2.1 Central level ... 11

2.2 Data transmission and protocol ... 12

2.3 Field devices .. 13

3 Communication model for OCIT outstations .. 13

3.1 Security of the transmission ... 15

3.1.1 Security algorithm ... 15

3.1.2 Firewall .. 15

3.2 Addresses .. 16

3.3 IP network .. 16

3.4 Routes ... 16

3.5 Runtime performance .. 16

3.5.1 System time .. 16

3.5.1.1 Field devices with permanent data connections to the central device
 17

3.5.1.2 Field devices with temporary connections to the central device 17

3.5.2 Event-driven transmission ... 18

3.5.3 Chronological arrangement ... 18

3.5.4 Response time .. 18

3.6 Logical assignment .. 18

3.7 Fault in the transmission unit ... 18

4 Transmission protocols .. 19

OCIT-O_Protokoll_V2.0_A04 Page 4 of 70 OCIT Developer Group (ODG)

4.1 Transmission protocol of the OSI layer 3 (IP) .. 19

4.2 Use of OSI Layer 4 Protocols (UDP, TCP) .. 19

4.2.1 UDP with feedback .. 19

4.2.2 UDP without feedback ... 20

4.2.3 TCP with feedback .. 20

4.2.4 TCP without feedback ... 21

4.2.5 Transmission security at the transport level 21

5 OCIT outstations BTPPL protocol (OSI layers 5-7) .. 21

5.1 Basic Transport Packet Protocol Layer - BTPPL ... 22

5.1.1 Telegram structure BTPPL: ... 23

5.2 General client–server communication .. 25

5.2.1 Change of the domain name of field devices via a DNS 26

5.3 Chronological arrangement (timestamp) .. 26

5.3.1 Timeout ... 27

5.4 Logical assignment .. 27

5.5 Encoding of the data .. 27

5.6 Objects ... 28

5.6.1 Member number .. 29

5.6.2 Identification of the objects.. 30

5.6.2.1 Selection of the return codes (RetCodes) 30

5.6.3 DNS cache invalidation ... 33

5.7 Securing the transmission for OCIT outstations protocol 33

5.7.1 OCIT-O passwords ... 33

5.7.1.1 Installation of a new device ... 34

5.7.1.2 Changing the OCIT-O password of a field device 34

5.7.2 Transmission protection through the Fletcher algorithm 35

5.7.3 Transmission protection through the SHA-1 algorithm 36

OCIT-O_Protokoll_V2.0_A04 Page 5 of 70 OCIT Developer Group (ODG)

5.7.3.1 Calculation of the checksum.. 37

5.7.3.2 Transmitting a command ... 37

5.7.3.3 Return codes used by the security protocol..................................... 38

5.8 Checking TCP channel .. 39

6 Typification ... 40

6.1 Interface objects .. 40

6.1.1 Basic data types .. 40

6.1.2 Meta-element DECL .. 42

6.1.3 REFPATH ... 42

6.1.3.1 REFPATH_DATA .. 43

6.1.3.2 EXTENSIBLE .. 43

6.1.3.3 MINCOUNT MAXCOUNT .. 44

6.1.4 Meta-element MSGPART ... 45

6.1.4.1 Format strings .. 45

6.1.5 METHOD ... 46

6.1.6 CLASSATTRIBUTE .. 46

6.1.6.1 FRAME .. 47

6.1.6.2 FRAME_DATA .. 47

6.1.6.3 CATEGORY .. 47

6.1.6.4 DEGREE ... 47

6.1.6.5 FORMAT ... 47

6.2 Data definitions .. 47

6.2.1 OCIT outstation DTD file ... 48

6.2.2 OCIT outstations objects TYPE files ... 48

6.2.3 Structure of the TYPE files .. 48

6.3 Standard interfaces .. 53

6.3.1 System interface ... 54

OCIT-O_Protokoll_V2.0_A04 Page 6 of 70 OCIT Developer Group (ODG)

6.3.1.1 Get ... 54

6.3.1.2 Update ... 54

6.3.1.3 Create .. 55

6.3.1.4 Delete .. 55

7 Example of the display of the XML in telegrams .. 56

7.1 Types, XML description ... 56

7.2 Entities ... 60

7.3 Telegrams .. 61

8 Trace options ... 64

8.1 Trace file .. 64

8.2 External tracing .. 64

8.2.1 Trace connection ... 65

8.3 Binary trace file format ... 65

8.4 Task structure .. 66

OCIT-O_Protokoll_V2.0_A04 Page 7 of 70 OCIT Developer Group (ODG)

Document history

Version
 Issue

Distribut
ed to

Date Comment

V2.0 A01 PUBLIC 2008-
03-20

3.1.1 Security algorithm
4.2 OSI Layer 4: Telegram size
4.2.3 TCP with feedback
5.2.1 Change of the domain name of the field devices
5.3.1 Timeout
5.7.1 OCIT-O passwords
5.7.3.2 Transmitting a command
6.1.3 Refpath
6.1.4.10 Format strings
8 Trace options

V2.0 A02 PUBLIC 2009-
07-10

3 Communication model OCIT-O: TCP is strictly required.
3.5.1 System time: Addressing of the NTP server added
4.2 Use of OSI Layer 4 Protocols (UDP, TCP): Text adapted
in accordance with section 3, note inserted.
5.6.2 Identification of the objects: text for return code
specified in greater detail.
5.7 Security of the transmission: text corrected.
6.1.3.2 Interface object EXTENSIBLE: Length of the data
packets

V2.0_A0
3

PUBLIC 2010-
06-18

6.1.5 METHOD: Note added
4.2 Block size of the telegrams increased to 2 megabytes;
note added
5.6.2.1 Priority of return codes: New section
8.3 Binary trace file format: Field "protocol" extended
8.4Task structure: text corrected.

V2.0_A0
4

PUBLIC 2012-
06-18

Glossary: information on IPv4 added.

OCIT-O_Protokoll_V2.0_A04 Page 8 of 70 OCIT Developer Group (ODG)

Specifications

The OCIT outstations configuration document OCIT-O CD Vx.x contains an
overview of all of the specifications having a copyright administered by ODG and
assigns versions and issue statuses according to:

 associated specifications of the interface "OCIT outstations for traffic signal
controllers" with reference to the corresponding OCIT instations specifications,

 gives information on the use of the transmission profiles and

 provides an overview of packages of specifications for interfaces for the use of
which a nominal fee is required by ODG

The current issue of the document is published on www.ocit.org.

www.ocit.org

OCIT-O_Protokoll_V2.0_A04 Page 9 of 70 OCIT Developer Group (ODG)

1 Introduction

The document OCIT-O protocol contains definitions in the field of OCIT outstations
that are to be adhered to for creating compliant interfaces. The document describes:

 the system limits,

 the OCIT outstations protocol,

 and contains rules for defining objects.

The definitions apply to field devices and central devices.

1.1 New or advanced functions in OCIT-O TSC V2.0

4.2 New telegram size
5.2.1Change of the domain name of the field devices
5.3.1 Calculation rule timeout
6.1.4.10 Format string for checksum
3.5.1.1 Frequency of NTP query
6.1.3.2 Element EXTENSIBLE
8 Trace options

1.2 System limits

An overview of the OCIT system can be found in the document OCIT-O System. This
document only addresses the field of OCIT outstations. The field marked OCIT
Outstations in Figure 1 at the same time represents the field of the definitions and
therefore the system limits of OCIT outstations. Interfaces that lead out beyond the
system limits represented are not defined in this document.

An OCIT outstations system consists of a central device (central level) and OCIT
outstations field devices. Central device and field devices communicate via the OCIT
outstations interfaces.

OCIT-O_Protokoll_V2.0_A04 Page 10 of 70 OCIT Developer Group (ODG)

Figure 1: Fields of OCIT outstations interfaces

German English

Feldebene Field level

verschieden Hersteller von Feldgeräten different manufacturers of field devices

Kabel (Modem,..), Cable (modem, etc.),

Funk (GSM, ..), Radio (GSM, etc.),

Telefon (ISDN..), Telephone (ISDN, etc.),

LWL (ATM,..) LWL (ATM, etc.)

zentrale Ebene Central level

OCIT-O Funktionen in der Systemumgebung eines
Herstellers (in OCIT-O als Zentrale bezeichnet)

OCIT-O functions in the system environment of a
manufacturer (designated a central device in OCIT-O)

Anwendungen verschiedener Hersteller Applications from different manufacturers

Schnittstellen OCIT-Outstations Interfaces OCIT outstations

OCIT-Outstations zentraler Systemzugang OCIT outstations central system access

OCIT outstations are standardized interfaces with their field of application between
the central device and field devices:

 Central device — field devices
Connection between the central device and controllers for the purpose of
control,
monitoring and data collection. The field devices are single-master controllers;
therefore, from a logical perspective, their counterpart is always the central
device or a service tool in the central device.

 Central — service tools (central system access)
Allows the connection of service tools in the central device and thereby allows
access to the field devices. For connecting the service tool, the central LAN is
used. Additional definitions are given in the document OCIT-O Basis.

OCIT-O_Protokoll_V2.0_A04 Page 11 of 70 OCIT Developer Group (ODG)

 Field device — service tools (local system access)
Designed for directly connecting the service tools to the controller. Before now
no definitions had been found for this in OCIT-O.

2 Interfaces and system functions for OCIT
outstations

The typical task of OCIT outstations is the secure remote operation and monitoring
of field devices, for which immediate acknowledgment, reaction and troubleshooting
takes place. For the secure transmission of data between central device and field
devices the protocols TCP and IP known from the Internet are used. Due to this the
transmission speed depends on the paths in the network and the amount of data.
The transfer times therefore cannot be predicted in every individual case. They,
however, do not generally make their presence felt by the operator. This runtime
performance is considered in all the specifications. OCIT outstations can therefore
also use the rapidly growing opportunities in telecommunications and networking on
the road and therefore has a future-proof technical basis. This also allows OCIT
outstations to adapt to new requirements with time and functionally expand, while the
extent of the expansions is not yet known. A requirement can be derived from this:
the transmission path may not be loaded with time-critical data in order to avoid
future overload from the start.

This requirement shall be fulfilled when time-critical control tasks are performed in
the controllers on site and are not processed between the central device and
controller via the interface. Such systems are referred to as "decentralized systems".
The OCIT outstations field devices therefore have processors that can handle the
complex procedures locally and can perform appropriate processing.

Commands and data are transferred via the OCIT-O interface when certain events
transpire. System-wide, accurately timed actions are carried out in a time-controlled
fashion. For this there is a time-standardization service present in the central device
with which all the controller-internal clocks can be set so that all the controllers in the
entire system have a single basis of time. All of the messages and commands are
marked with a "timestamp" that arranges them chronologically. The synchronization
of "green waves" too takes place using the exact system time and not via
synchronization commands from the central device.

2.1 Central level

The field devices are monitored and controlled from a central level. The central level
can consist of several components and subsystems, which can be located at
different locations. A defined function of the traffic signal controller also requires a
corresponding function in the central device. Furthermore, these central devices
have the so-called central system access. Using it the service tools can
communicate with the field devices directly from the central device. Access of the
service tool to the field devices takes place practically in parallel to the access of the
central device. The most important feature is that remote data supply to the traffic
signal controllers is possible via the center system access.

OCIT-O_Protokoll_V2.0_A04 Page 12 of 70 OCIT Developer Group (ODG)

For central devices that communicate with OCIT-O the following properties are
obligated:

 Support of all OCIT outstations functions,

 Provision of an exact system time,

 Provision of central OCIT outstations system access.

2.2 Data transmission and protocol

The transmission technology in OCIT outstations is based on standard transport
protocol TCP/IP, which can be used independent of the physical data transmission
and guarantees secure data connections. Common services on the Internet such as
HTTP, FTP and e-mail, for example, use this standard.

OCIT has its own definition for the transfer protocol of the user level that can coexist
with the Internet standards, the "Basic Transport Packet Protocol Layer" (BTPPL).
BTPPL was developed with reference to cable connections sometimes present in
urban control networks with limited transmission capacity. It works with a small data
overhead and this allows it to use these routes as well.

BTPPL offers 2 channels for data transport. A channel with a high priority is used for
switching commands and messages; remote data supply can be performed on the
channel with low priority. The method is asynchronous. A transmitter can continually
send telegrams and after dispatching telegrams does not need to wait for
corresponding feedback messages but can rather arrange these in terms of time
after their arrival. An integral part of the protocol is the SHA-1 algorithm, which has
24-bit password protection ensuring that hackers cannot tamper with the field
devices.

BTPPL can communicate using TCP/IP via various transmission paths. For many of
these types of communication there exist standards and therefore also standard
communication devices. Examples: DSL, Ethernet, GSM, analog public telephone
network, ISDN (digital public telephone network) and dedicated-line mode in private
networks via analog modems.

In the OCIT system some of these standard processes are suitable for
communication between field devices and central devices. The corresponding
definitions in the OCIT standard are designated as OCIT transmission profiles. They
consist of definitions for system features, type of transmission media and devices,
minimum requirements for transmission capacity, line properties, etc.

With OCIT transmission profiles, different traffic signal controllers from different
manufacturers can be operated without additional agreements.

Defined so far are:

"Profile 1 – Transmission profile for point-to-point connections on permanently
switched transmission paths". Transmission takes place here with analog modems
CCITT V. 34 typically at 28800 bps.

OCIT-O_Protokoll_V2.0_A04 Page 13 of 70 OCIT Developer Group (ODG)

 "Profile 2 – Transmission profile for dial-up connections in the fixed-line network and
GSM mobile telecommunication network". Transmission takes place here with GSM
modules at 9600 bps or with ISDN at 64000 bps.

"Profile 3 - Ethernet with DHCP". Connection with Ethernet is a standardized, wired
data network technology for local data networks, via which a simple connection to a
wide variety of communication networks is possible.

Transmission profiles not standardized in OCIT can be implemented on a
manufacturer-specific basis, but they require hardware and software changes to
controllers and central devices.

2.3 Field devices

The field devices with OCIT-O interfaces are single-master controllers. From a logical
standpoint its counterpart is always a "single central device", even if it is composed
of multiple system parts or components. Incoming commands from the central device
are therefore always carried out in the same way by the controllers without
distinguishing from which component they originate.

Due to the time behavior of the OCIT outstations protocol, the field devices are
designed specifically for use in systems with a decentralized structure. Time-critical
control tasks in these systems are processed locally in the field devices. The field
devices therefore have processors that can handle the complex procedures locally
and can perform appropriate processing.

3 Communication model for OCIT outstations

The communication model is based on the ISO/OSI reference model. The ISO/OSI
reference model (international standard organization/open systems interconnection),
also known as OSI model or OSI layer model, is an abstract definition of a model,
with whose real-world implementation the most various kinds of networked systems
(e.g. different manufacturers with different technical components, public providers,
local-area networks with different access methods and data transmission protocols,
etc.) can be connected to one open, i.e. intercompatible, communication network.

OCIT-O_Protokoll_V2.0_A04 Page 14 of 70 OCIT Developer Group (ODG)

Figure 2: The layers in the ISO/OSI reference model

German English

Anwendung Application

Dastellung Presentation

Kommunikationssteuerung Communication control

Transport Transport

Vermittlung Mediation

Sicherung Security

Physikalische Schicht Physical layer

ISO-Schichtbezeichnungen ISO layer names

The bandwidth-optimized BTPPL protocol specially developed for OCIT outstations
encompasses functions for user levels 5 to 7. With the exception of the OCIT
outstations protocol BTPPL only standard protocols are used.

TCP/UDP/IP are the transport protocols of the middle levels 3 and 4. All commands
that are larger than 4 KB must be transferred via TCP. TCP absolutely must be put in
place!

With both UDP and TCP it is possible that different transmission units can be defined
for later provisions without the main part of the protocol changing. In principle, all the
usual media and telecommunications services can be connected through the layers
2 and 1. Connection protocols are used in accordance with the transmission medium
and the transmission unit to be utilized. In OCIT the type of transmission unit is
defined in the "Profiles" documents. The manufacturer is free to choose which
interface and which plug to use for the connection of this equipment.

For the application between central device and field devices it is mainly point-to-point
connections on permanently switched transmission paths that are concerned and
therefore also the customers' own cable routes for traffic signal systems. For this
reason this transmission profile was defined as the first (Profile 1 - Transmission
profile for point-to-point connections on permanently switched transmission paths).
Here a PPP (point-to-point) protocol is used and a modem used as a transmission
unit. The appropriate protocols in layers 2 and 1 are shown in Figure 2.

7

6

5

4

3

2

1

Anwendung

Darstellung

Kommunikationssteuerung

Transport

Vermittlung

Sicherung

Physikalische Schicht O
S

I
-S

c
h
ic

h
tb

e
z
e
ic

h
n
u
n
g
e
n

7

6

5

4

3

2

1

Anwendung

Darstellung

Kommunikationssteuerung

Transport

Vermittlung

Sicherung

Physikalische Schicht

7

6

5

4

3

2

1

7

6

5

4

3

2

1

Anwendung

Darstellung

Kommunikationssteuerung

Transport

Vermittlung

Sicherung

Physikalische Schicht

Anwendung

Darstellung

Kommunikationssteuerung

Transport

Vermittlung

Sicherung

Physikalische Schicht O
S

I
-S

c
h
ic

h
tb

e
z
e
ic

h
n
u
n
g
e
n

OCIT-O_Protokoll_V2.0_A04 Page 15 of 70 OCIT Developer Group (ODG)

3.1 Security of the transmission

Transmission security is carried out at the transport level and—depending on the
protocol—at layer 2 (data link layer) as well.

Because central devices are often connected to networks such as an Intranet or the
Internet, an unknown number of users can have access. Particularly in the case of
internal networks many users have authorized access. In both cases, an attack
perpetrated by hackers is possible. This is why monitoring of the field devices is
ensured in two stages at the user level in the OCIT outstations protocol.

3.1.1 Security algorithm

At the user level a distinction is made between SHA1-secured and non-secure
transmission:

 Non-security-related communication such as the transmission of visualization
data, for example, which accounts for the vast majority of communication (for
some projects more than 95% of the data volume), is only secured against
unintentional, incidental transmission errors and misdirected UDP packets. Such
security only requires 2 bytes per packet. Calculation of the checksum can be
performed on the PC with few assembler commands per transmitted byte
(Fletcher's algorithm).

 Security-related communication:

 user supply,

 control commands and commands impacting system behavior

are secured with the SHA-1 algorithm against intentional access.

SHA-1 is a secure checksum method that identifies and rejects any unauthorized
transmission. In a different context SHA-1 is also used for the formation of digital
signatures and is recognized as safe worldwide. For transmission security a separate

password is needed (OCIT-O Password), which verifies the communication
partners. The use of this process has the benefit, among other things, that system
access does not have to be protected by a firewall. The time expended on this
process is kept within narrow bounds because only a very small portion of the
communication is secured in this way.

3.1.2 Firewall

The SHA-1 algorithm protects the field device, which ignores unsecured commands.
If hackers electronically tap the connections between the field devices and central
devices, intrusion into the central system components and further into the
administrative network would nevertheless be possible. This attack can occur due to
improper use of the network protocols of layers 3 and 4.

In their central communication equipment the manufacturers of central devices
generally offer a more or less high level of protection against these intrusion

OCIT-O_Protokoll_V2.0_A04 Page 16 of 70 OCIT Developer Group (ODG)

attempts. Administrative networks are usually protected through the use of firewalls
at different system levels.

3.2 Addresses

Field devices and central devices communicate via IP addresses. Each field device
in an operator network must therefore have a unique IP address. First and foremost,
self-administered addresses come into consideration. The paid use of real Internet
addresses is possible but is unrealistic due to the high number of required Internet
addresses. This "field device network" is often a star network connected via
customers' own lines. Every device has a unique host name (see section 5.2).

3.3 IP network

It is to be determined on a project-specific basis whether OCIT outstations and
addresses of the central components are within one common IP network. If
necessary, a firewall is to be used on a project-specific basis.

Direct communication between central traffic-related terminals and field devices via
the IP network is only defined for central system access.

3.4 Routes

Due to the use of the IP in the OSI Layer 3 messages, it is technically possible in
principle to route notifications and therefore to carry out transmissions from field
device to field device or to other system components. For star connections, routing
takes place via the central device, which work similarly to a telephone exchange
here. No definitions have been made so far for these functions.

3.5 Runtime performance

The system is not designed for transmissions with deterministic runtime
performance. The transmission speed attainable in the network depends on the
communication system and the data load in the network. System-wide, accurately
timed actions are therefore carried out in a time-controlled fashion. For this there is a
time-standardization service present in the central level with which (in the standard
scenario) all the controller-internal clocks can be set so that all the controllers in the
entire system have a single basis of time. All of the messages and commands are
marked with a "timestamp" that arranges them chronologically.

3.5.1 System time

The system requests a matching system time in the central device and all field

devices with an accuracy of 500 ms.

OCIT-O_Protokoll_V2.0_A04 Page 17 of 70 OCIT Developer Group (ODG)

For this the central device provides the time-standardization service NTP (RFC

1305)
1
, which can be used by the OCIT traffic signal controllers for synchronizing

controller time with central device time. The synchronization process compensates
for the transmission times in the network. The time-standardization service provides
an unchanging basis of time that does not acknowledge any skipping for daylight
savings time and back and no time zones (UTC time). The UTC time is the system's
internal basis of time. For conversion to the local time, local information (time zone)
and the switching points for daylight savings time/standard time are needed. These
are not defined in OCIT outstations. The conversion from the UTC times—delivered
by OCIT devices in their messages—to local time takes place in the central device.

Generally considered to be the NTP server is FNr. 0(fg0) in the central device, where
the IP address can be obtained via "reverse lookup". A manual configuration of NTP
servers is a project-specific solution.

3.5.1.1 Field devices with permanent data connections to the central device

Note: Functioning has been modified compared to previous version (frequency of
NTP
query).

If no explicit request by the operator is indicated, then the central device time-
standardization service has the highest priority for time synchronization of the
controller time with the central device time. Clocks in the field devices provide the
controller time only after being switched on or if the central device time-
standardization service cannot be reached during a time specified by the
manufacturer.

For permanent connections such as OCIT-O Profile 1 the central device time-
standardization service NTP is to be requested at least every 15 minutes and
immediately after the connection is established.

Optionally, the controller can be configured in such a way by the manufacturer that a
local clock takes priority as a time reference for the controller time. In this case, the
central device time-standardization service is only used in the event of failure of the
local clock. With this option the required uniform system time is only guaranteed if
the central device time reference for the time-standardization service is also obtained

via a similar clock such as in the traffic signal controllers.

3.5.1.2 Field devices with temporary connections to the central device

A configuration with prioritized central device time-standardization service is not
practical here because it would require permanent connections. Therefore, local
clocks in the field devices (DCF 77 or other systems) provide the prioritized time
reference for the controller time. The required uniform system time is only
guaranteed if the central device time reference for the time-standardization service is

also obtained via a similar clock such as in the traffic signal controllers.

1
 The alternative service Netdate (RFC 868) listed in OCIT-O protocol V1.0 is no longer permitted.

OCIT-O_Protokoll_V2.0_A04 Page 18 of 70 OCIT Developer Group (ODG)

3.5.2 Event-driven transmission

 Every transmission operation is triggered by an event:

 If the operating state of the controller changes (in operation, fault, error),

 if the aggregation time interval has expired or

 if it is decided via the device logic that a transmission is to be performed.

 The transmission of events can originate both from the central device as well
as from the field devices. Whether an acknowledgment of the transmitted
notification takes place or whether the notification is repeated in the absence of
acknowledgment depends on the relevant definition.

3.5.3 Chronological arrangement

Aggregated and buffered data are transmitted with a timestamp. The timestamp is a
part of the transmitted data.

3.5.4 Response time

If the transmissions are acknowledged, a timeout that takes into account the
maximum response time is to be expected.

3.6 Logical assignment

The BTPPL protocol uses an asynchronous call-up process; that is, the call-up
program continues running without waiting for the execution or acknowledgment of a
command. Responses to commands can therefore arrive in a different chronological
order. The logical assignment between command and response is ensured by the
asynchronous call–respond mechanism of the BTPPL protocol.

3.7 Fault in the transmission unit

The behavior of the system in the event of a malfunction in the transmission unit
depends on the device type and transmission system. Definitions applicable system-
wide are given in the document "Basis". Additional definitions are given in the
documents of the transmission profiles.

OCIT-O_Protokoll_V2.0_A04 Page 19 of 70 OCIT Developer Group (ODG)

4 Transmission protocols

This section describes OSI layers 3 and 4. OSI layers 1 and 2 are presented in the
documents OCIT-O Profiles.

4.1 Transmission protocol of the OSI layer 3 (IP)

In the network layer standard IP is used in all cases.

4.2 Use of OSI Layer 4 Protocols (UDP, TCP)

Note: Functioning has been modified compared to previous version (new telegram
size).

Depending on the size of the packets either TCP or UDP is used for BTPPL
communication with the OCIT outstations devices. All packets that are smaller than 4
KB can be transmitted via TCP or UDP; all packets that are greater than 4 KB must
always be transmitted via TCP. The central device decides whether transmission is
carried out via TCP or UDP. For a request via TCP, response takes place via TCP;
for a request via UDP, response via UDP.

For every supply item an OCIT-O object is created.

The existing OCIT-O methods, error messages etc. are used.

Supply objects are transmitted with btppl as a notification with low priority (also
see5.1).

The restriction of the telegram size to 1 MB for TCP (for OCIT-O TSC V2.0 Issue 1
or higher) is raised to 2 MB with OCIT-O Version 2 Issue 3 . The field device must
have a correspondingly large memory to cache an entire supply (buffer) available.
For TCP, btppl telegram sizes of up to 2 megabytes are to be processed.

Note: The introduction of a fragmentation is expected starting in the next version,
which will remove the size limit for the telegrams.

4.2.1 UDP with feedback

For a transmission via UDP the client dispatches the packet from any send port and
saves the job number (see 5.1.1) and the send port + IP address of the sender in
order to assign the response. The use of the job number ensures that multiple
commands can be sent from one send port without having to wait for a response to a
command. According to the importance of the command, the packet is dispatched
either to PNP or to PHP.

The packet is received by the server and processed there. For editing, the job
number and the IP address of the sender and the original port must be stored in
cache in order to be able to send a response back. If the same port number / job

OCIT-O_Protokoll_V2.0_A04 Page 20 of 70 OCIT Developer Group (ODG)

number combination arises again during processing, it is the decision of
Implementation whether to ignore this command or reprocess once again. As soon
as the command has been processed, the response is sent back with the original job
number to the original port. If after the dispatch of the response a command with the
same port number and the same job comes, the server must re-edit the command.

The server sends the response (respond packet) back to the address from which the
request (job number + port + IP address) came. If the client does not receive the
response telegram before the expiration of the timeout (retry), it repeats the request
(multiple times if necessary). Only if after a second timeout (fail) still no answer has
been returned, the command is reported back up as failed. In this case the caller
does not know whether the command was not performed or whether the command
has been carried out but only the answer went missing or whether the command is
still in a queue. It is the responsibility of the calling process in this case to either
repeat or ignore the command. As soon as a response is sent back or if the fail
timeout has expired, the appropriate message is transmitted to the calling program.
All the following response packets that arrive late are simply ignored.

To send a telegram a "Request" packet is used; for the response a "Respond"
packet.

4.2.2 UDP without feedback

The notification is dispatched from any send port. Depending on the importance of
the command the client sends the packet (Request) either to the PNP or to the PHP
of the server.

The packet is received by the server and processed there.

Only the messages defined below are used as packages without feedback.

4.2.3 TCP with feedback

Before a packet is transmitted via TCP it is verified whether a TCP channel is already
open. If this is not the case, then a TCP channel is opened. Depending on the
importance of the command the packet is sent either to the PNP (low-priority port) or
to the PHP (high-priority port). The job number is transmitted because it is needed
for multithreaded servers and clients. The channel remains open at least until the
response arrives or until the timeout (fail) occurs. However, it must be checked
during command execution whether the channel still exists. In the event of an error,
the command is canceled. The channel is only opened for the next command.

The response is returned to the port from which the transmission originated. During
processing the channel remains open. For TCP the server also sends the job
number from the request telegram to the respond telegram. If the server cannot
transmit the response telegram, it rejects it and does not attempt to reopen the
channel.

At the send port the client waits for the response (respond telegram) to the
dispatched command (request telegram). If after a timeout (fail) still no answer has
been returned, the command is reported back up as failed.

OCIT-O_Protokoll_V2.0_A04 Page 21 of 70 OCIT Developer Group (ODG)

In this case the caller does not know whether the command was not performed or
whether the command has been carried out but only the answer went missing or
whether the command is still in a queue. It is the responsibility of the calling process
in this case to either repeat or ignore the command. As soon as a response is
received or if the fail timeout has expired, this is given as feedback to the caller. It is
not necessary that the channel be closed after execution. However, both client and
server must be programmed in such a way that the taking away of the channel is
responded to correctly.

To send a telegram a "Request" packet is used; for the response a "Respond"
packet.

4.2.4 TCP without feedback

TCP without feedback is possible.

4.2.5 Transmission security at the transport level

Transmission security against data corruption is implemented at the transport level
only with TCP and not with UDP. TCP initializes, monitors and terminates the
connection and ensures that the telegrams arrive.

5 OCIT outstations BTPPL protocol (OSI layers 5-7)

This section contains the description of the OCIT outstations protocol and other
definitions associated with the protocol such as the security algorithm used in OCIT
outstations.

Figure 3: Protocols for OCIT outstations

German English

OSI-Layer OSI layer

OCIT-Outstations protokoll OCIT outstations protocol

Dienste Services

BTPPL BTPPL

TCP / UDP TCP / UDP

IP IP

PPP PPP

Schnittstelle zur Übertragungseinrichtung Interface to the transmission unit

BTPPL

OCIT-Outstations Protokoll

TCP / UDP

IP

PPP

Schnittstelle zur Übertragungseinrichtung

OSI-Layer

7

6

5

4

3

2

1

D
ie

n
s
te

BTPPL

OCIT-Outstations Protokoll

TCP / UDP

IP

PPP

Schnittstelle zur Übertragungseinrichtung

OSI-Layer

7

6

5

4

3

2

1

D
ie

n
s
te

OCIT-O_Protokoll_V2.0_A04 Page 22 of 70 OCIT Developer Group (ODG)

The OCIT outstations protocol in OSI layers 5 - 7 includes:

 the connection of the communication system to the controller software
(including OCIT objects) of the respective manufacturers and

 the BTPPL protocol developed specifically for OCIT outstations. It connects
the objects in the remote systems (central device and field devices) via method
calls. BTPPL forms these method calls through telegrams at UDP/TCP/IP
level. BTPPL uses very compact telegram structures.

5.1 Basic Transport Packet Protocol Layer - BTPPL

BTPPL includes:

 Telegram structure
- Header
- Serialization of the data (call-up parameters of the methods)
- Checksums (Fletcher's, SHA-1)

 Progression of method calls
- Functions with return parameters
- Functions without return parameters

 Methods for changing the OCIT-O password.

BTPPL does not include:

 The methods for using device functions (these can be found in the application),

 Definitions for OSI layers below IP and

 Methods for saving data.

BTPPL is a symmetrical protocol. No theoretical distinction is made between a field
device and a central device. All participating devices are both client as well as server.
It is therefore possible with the protocol for field devices to send commands to other
field devices (such as the central level) without further action.

BTPPL uses asynchronous method calls. Here calling and execution take place in a
connected device via the protocol functions ("methods"). The resource consumption
of asynchronous method calls is significantly lower than that of synchronous method
calls. The functionalities of the interface to be defined are divided into "object types" ,
"objects" and "methods". The division is performed for the following reasons: In all
devices there are numerous elements that are more or less independent from one
another. In a traffic signal controller these are, for example, signal plans with their
own respective commands, measuring points, operation logs or TA logics. Each of
these elements, although not physically present, is a certain type of an object (object
type) for the purposes of object-oriented programming. Each of these objects can be
addressed individually and has its own functions (methods), which reference exactly
these objects. For certain types of objects, such as signal plans, there are multiple

OCIT-O_Protokoll_V2.0_A04 Page 23 of 70 OCIT Developer Group (ODG)

objects in the device. So that these objects can be distinguished, each object has an
exact designation (ObjectID).

OCIT outstations require two ports per TCP and UDP: Low-priority notifications are
transmitted via one port, and high-priority notifications via the other port. Both ports
are used both for TCP as well as for UDP. Both ports are assigned during
installation:

 Low-priority notifications are transmitted to Port 3110. In the following the port

is abbreviated as PNP.

 High-priority notifications are transmitted to Port 2504. In the following the port

is abbreviated as PHP.

The send port can be defined freely for each. The response is returned to the port in
the same protocol from which the task originated. If a request is sent via UDP and
the response is greater than 4 KB, an error is given in response.

5.1.1 Telegram structure BTPPL:

Offset Offset + 0 Offset + 1 Offset + 2 Offset + 3

0 BL (MSB) BL (LSB)

4 HdrLen T V r r S JobTime (Hi) JobTime (Lo)

8 JobTimeCount JobTimeCount Member (Hi) Member (Lo)

12 OType (Hi) OType (Lo) Method (Hi) Method (Lo)

16 ZNr (Hi) ZNr (Lo) FNr (Hi) FNr (Lo)

20 Path, Length: HdrLen-16

4+HdrLen Parameter block:

Length: BL-HdrLen-2 (without SHA-1 protection)

Length: BL-HdrLen-26 (with SHA-1 protection)

BL-22 UTC (MSB) UTC (LSB)

BL-18 SHA-1 checksum

BL-14 SHA-1 checksum

Bl-10 SHA-1 checksum

Bl-6 SHA-1 checksum

Bl-2 SHA-1 checksum

Bl+2 Fletcher (Hi) Fletcher (Lo)

In non-safety-critical telegrams the lines BL-22 to BL-2 are missing.

Comment:

MSB: most significant byte (2^31 - 2^24)

OCIT-O_Protokoll_V2.0_A04 Page 24 of 70 OCIT Developer Group (ODG)

LSB: least significant byte (2^7 - 2^0)

The fields signify the following:

Name Meaning

BL Block length. The block length is used only for TCP. For UDP the
block length of the UDP block is used.

HdrLen Length of header including path in bytes. Starting with the address
HdrLen the parameters of the command begin. If no path is
present, HdrLen has the value 16, otherwise 16+<length of the path
entry in bytes> .

T Type of the telegram (flag >> 5):

0: Request (command telegram).

1: Respond (response telegram to command telegram type
"Request")

2: Message (command telegram without response)

3 - 8: reserved

V OCIT outstations BTPPL version ((flag >> 3) & 3):

0: OCIT outstations BTPPL Version 1

1 - 3: reserved

r Reserved bits (always 0)

S SHA-1 checksum (flag & 0x01):

0: only Fletcher's checksum

1: Fletcher's checksum and SHA-1 checksum

JobTime

JobTimeCount

JobTime and JobTimeCount together form the job number. The job
number is generated by the sender for a request telegram and may
not be reassigned until there is a response (respond telegram). The
same number is entered into the respond telegram. This way the
respond telegram can be assigned. In message telegrams this field
is to be set to 0.

Member Number of the manufacturer that defined the access Object. The
manufacturer numbers (member numbers) are assigned by the
ODG

OType Type of object

Method Number of the method within the interface

ZNr Number of the central device. Every central device of an operator
must have a unique central device number.

FNr Number of the field device under the central device. All the devices
that are controlled by a central device must have a unique name
throughout the central device. The central device always has the
field device number 0.

Path Objects that exist in multiples in a device are defined uniquely here.

OCIT-O_Protokoll_V2.0_A04 Page 25 of 70 OCIT Developer Group (ODG)

Name Meaning

The length of the path type varies. It can be derived directly from
HdrLen. The path can also have an odd-number length.

Parameter
 block

Input parameters for request and message blocks; output
parameters for respond blocks. In respond blocks the first two bytes
are always the status word in which the result of the function is
entered. The parameter block can vary in length. The parameter
block can have an odd-number length.

UTC Time at which the packet was dispatched in unsigned32 format.
The UTC field is only used if a secured telegram (i.e. with SHA-1) is
transmitted.

SHA-1 Checksum. The checksum is calculated for the area from and
including HdrLen (Offset 0 for UDP, 4 for TCP) up to and including
UTC(LSB). Detailed description in section 5.7.3.

Fletcher Fletcher's checksum. The checksum is calculated for the block from
and including HdrLen up to and including the byte before the
checksum. It therefore always includes the parameter block and—if
transmitted—the SHA-1 checksum, too. Detailed description in
section 5.7.2.

5.2 General client–server communication

All the communications available in the protocol can be traced back to the client–
server principle, which is described here directly below. The role which individual
devices each take on then is listed below.

Each device has a unique host name. The host name is designed as follows:

fg<device_number>.z<control_center_number>.<operator_domain>

The OCIT outstations TSS 5 at central device 3 of the operator "ruebenstadt-sv.de"
therefore has the host name:

fg5.z3.ruebenstadt-sv.de

In the central device a DNS server (name server) is set up and the IP addresses of
the field devices are consistently supplied there on a project-specific basis. The
OCIT outstations system access ways (note: not available in OCIT-O V2.0) also use
the DNS server (RFC 1034, RFC 1035, RFC 974, RFC 1912) for determining the IP
address.

Communication between the field devices runs via IP routing (not yet standardized).
The allocation of the IP addresses is done on a project-specific basis here.

OCIT-O_Protokoll_V2.0_A04 Page 26 of 70 OCIT Developer Group (ODG)

5.2.1 Change of the domain name of field devices via a DNS

With this option, changes to domain names of the operator domain that usually affect
all the traffic signal controllers / field devices of a control area are automatically
carried out. The resupply of the domain names of all the field devices affected to be
performed proprietarily is therefore no longer necessary.

The field devices determine their valid domain names for this from data that must be
transmitted from the central level to the field devices during initialization. These data
are defined in the previously established transmission profiles. Before this the field
device thus already receives

 the IP address of the central device peers,

 the IP address of the field device (FD IP address) and

 two addresses of domain name servers.

In order to establish the domain name and/or possible changes to the domain name,
the field device performs a reverse DNS lookup via the FD IP address and thereby
obtains DNS's full domain name (fully qualified domain name) from DNS. This is in
accordance with the OCIT-O protocol:

"fg<device_number>.z<control_center_number>.<operator_domain>"

So, for example fg5.z3.ruebenstadt-sv.de. The domain name of the operator domain valid
for the field device, in the example ruebenstadt-sv.de is derived from this.

If the field device detects a change to its domain name, then it updates its settings. If
the reverse lookup fails, the field device retains its old setting.

Every central level with OCIT-O components must support the reverse DNS lookup
of the FD IP address.

5.3 Chronological arrangement (timestamp)

 Aggregated data are transmitted with the time (timestamp) of the start of the
interval. The timestamp is not part of BTPPL but rather of the respective
object.

 Cached data are transmitted with the time (timestamp) at which the event
takes place. The timestamp is not part of BTPPL but rather of the respective
object.

 UNIX encoding of the UTC is defined as the format of the timestamp. The
code saves the number of seconds since 1.1.1970 (D.M.YYYY) as a 32-bit
variable. This coding is supported by virtually all operating systems, it is
compact and facilitates the sorting of events. It is to be noted that this time
format runs out on 19.1.2038 For communication in OCIT outstations the 32-bit
variable in this case is simply counted further and only runs out by
approximately 2100 C.E.

OCIT-O_Protokoll_V2.0_A04 Page 27 of 70 OCIT Developer Group (ODG)

5.3.1 Timeout

Note: Functioning has been modified compared to previous version (new calculation
rule for timeout).

If the transmissions are acknowledged, a timeout in the application that takes into
account the maximum response time is to be expected. The same timeout is used
for all the acknowledged transmissions:

 120 s + telegram length/(n bytes/s).

n = 1,000 bytes/s for profile 1

n= 250 bytes/s for profile 2 with GSM (not evaluated and depending on the quality of
the GSM connection)

Telegram lengths = length of the request + length of the respond telegram, in each
case from HdrLen up to and including Fletcher .

The timeout period is calculated only from the start of the transmission (start of relay
of the request telegram to TCP). At the time of receipt of the length of the respond
telegram, the timeout counter is to be corrected in accordance with the above
formula specifically for long respond telegrams.

5.4 Logical assignment

For commands a 32-bit operation identifier can be defined, which is unique system-
wide and used for operation logs, etc. The operation identifier is a part of the data of
an object. It is described in OCIT-O Basis. The specialization for traffic signal
controllers can be found in OCIT-O TSC.

Responses to commands can arrive in a different chronological order. Logical
assignment takes place via IP address, port and 32-bit job number (the job number is
an integral part of the BTPPL protocol).

5.5 Encoding of the data

For the encoding of the data a revised XDR format (RFC 1014) is used in OCIT
outstations. To save bandwidth the following changes are made to the XDR format:

 The basic block size (RFC 1014, section 2) is reduced to 1 byte. The use of 32
bits per byte is too great. Accordingly, for the sections RFC 1014 - 3.8, 3.9 and
3.10 the value of r is set to 0 (no padding).

 In addition to the signed integer (RFC 1014, section 3.1) a signed short (16
bits) and a signed char (8 bits) are added. Accordingly, an unsigned short (16
bits) and an unsigned char (8 bits) are added to the unsigned integer (RFC
1014, section 3.2). Padding does not take place in any case.

 Boolean values are stored as unsigned char.

OCIT-O_Protokoll_V2.0_A04 Page 28 of 70 OCIT Developer Group (ODG)

 Strings are always displayed with a 16-bit (USHORT) length word, which
indicates the number of BYTES(!) in the string.

 Depending on the maximum number of elements either a length byte (max.
255 elements), a length word (65535 elements) or a ULONG is set as a prefix,
which indicates the number of elements.

The union discriminators (which are very rare) remain at a length of 4 bytes each in
order not to have to introduce different types of unions.

5.6 Objects

The function calls in OCIT outstations are structured in an object-oriented fashion. In
contrast to RPC, for example, a function is represented not only by a number but
also by the combination of object type, object ID and method. This should first be
explained in greater detail:

Element Description

Object
type

(Member,

OType)

All elements that can be accessed in an OCIT device are assigned to
an object type. Examples of such object types are: Signal plan,
detector, operation log, etc. There are numerous object types that are
very basic and only have, for example, write or read access such as
device name, for instance.

The object type is described by the fields Member and OType. Member is
the member number of the manufacturer that uses the object type. For
OCIT outstations object types it is always a 0 or 1 that is listed; for
manufacturer-specific objects the number of the manufacturer is in this
position.

OType is the object type itself. The number must be uniquely assigned for
the standard objects. For manufacturer-specific objects they can be
defined by the manufacturers because the objects are already different
in terms of members.

ObjectID
(ZNr, FNr,

Path)

Most of the object types are available in multiples. This applies, for
example, to signal plans 1 to n, detectors 1 to n, message archives, etc.
In order to distinguish the entities of these objects, an ObjectID is
required that is unique for an operator across central devices. Unlike in
most communication systems, this address (ObjectID) is of variable
length and above all "descriptive" in OCIT outstations. This means that
already relevant data can be read from the ObjectID. The ObjectID for a
signal program consists, for example, of three elements: central device
number (ZNR), field device number (FNR) and the signal program
number, which are stored in the path. All three elements can be directly
evaluated and are "understandable" for the user and even more
importantly for the programs.

The entries ZNR and FNR are present in every ObjectID even though, for
example, a central device does not need to have a device number. The

OCIT-O_Protokoll_V2.0_A04 Page 29 of 70 OCIT Developer Group (ODG)

Element Description

reason for this is that the destination address of the device can be
determined from the combination ZNR and FNR. If FNR were not included
for every object, the central device, using the object type, would always
have to determine first whether the object must be forwarded to the
intersection controller.

The path in most cases contains no element or only one. However, it is
possible that path even contains several elements as long as the total
length does not exceed 240 bytes.

Object
The combination of ObjectType and ObjectID is designated as Object.
As mentioned previously in the above descriptions, there is at least one
object per device (the actual device) and normally additional objects as
well. These are specified by OCIT outstations in part and defined by the
manufacturers themselves in part.

Method
(METHOD)

All "functions" that are performed in an OCIT device refer to objects.
Therefore, they are designated as methods as is common in object-
oriented programming. It is always possible that the same methods can
be applied to different objects. Methods are always grouped to
interfaces in OCIT outstations.

All methods are functions with input and output parameters as well as a
function result. The function result is a 16-bit value. The first 10,000
entries are reserved for OCIT outstations. 0 always means "error-free
execution", while the values 1 - 9999 stand for OCIT-outstations-
specific errors. Values above 10,000 are reserved for manufacturers
and have a different meaning for each manufacturer and for each
object.

The input and output parameters are encoded in a compressed XDR
variant (see section 5.5). The input and output parameters for each
method are fixed and do not change regardless of the object to which
the method is applied. The methods of interface 0 are an exception
(section 6.3). They are dependent on the relevant object.

Parameter
s

In the OCIT outstations protocol each method is called up with 0 - n
input parameters and returns 0 - n output parameters. Each of the
parameters can be structured. The input and output parameters are
encoded in a compressed XDR format.

For messages (methods without return parameters) the calling program
continues to run without waiting for the execution of the command
(asynchronous call).

5.6.1 Member number

Using the member number it is possible to distinguish between OCIT objects and
manufacturer objects in the OCIT outstations system. Members 0 and 1 are the

OCIT-O_Protokoll_V2.0_A04 Page 30 of 70 OCIT Developer Group (ODG)

OCIT outstations objects defined by the ODG. They characterize the standard. The
so-called manufacturer objects are produced by the relevant creator at their
responsibility in accordance with the OCIT rules. Administration of the member
numbers is the responsibility of the ODG. The current list is to be published on the
homepage www.ocit.org.

5.6.2 Identification of the objects

All objects are identified by a unique access path worldwide. This path consists of
three fixed components and a "path" of variable length.

 The first fixed component is the operator identification. This enables
communication across central devices. As operator identification a real Internet
domain address or a similarly structured address of an isolated network can be
used. The operator domain is not part of the BTPPL telegram; it is only used to
establish connections across central devices.

 2 entries are used in the BTPPL header for device identification: The central
device number (ZNR) and the field device number (FNR). For an operator, the
central device number is a unique number of the central device. It includes a
range of values from 0 to 65534. The field device number is uniquely related to
the central device. It includes a range of values from 1 to 65534. The field
device number for central devices is always the number 0.

The host name of the device and therefore its IP address can be uniquely defined
with these first parts. A device is only ever addressed via an IP address.

The path is used to identify objects within the device. It usually consists of 0 or 1
entry, more rarely of 2 or more entries. For objects that are only present one time per
device the path is empty. Objects, such as detectors for example, that can be
identified via an entry have the number as the path entry. Only objects that are below
such duplicate objects—such as entries in a matrix that appears multiple times in the
device for example—have more than one entry (e.g. 3).

The structure of the path is uniquely identified by Member and OType. The Method
field in the BTPPL telegram indicates the interface function (method) to be called.

The unavailability of a feature called up by the central device must bring about a
recognizable response in the field device. For this, the calling command from field
device is acknowledged with a negative return code, and explicit OCIT-O messages
of the field device are not to be expected. Based on negative return codes the
central device can generate appropriate messages or actions (optional feature of the
central device that is implemented on a manufacturer-specific basis).

Note: Reactions of the central device to the return codes shall not be defined.

5.6.2.1 Selection of the return codes (RetCodes)

1. The RetCodes in place with the methods are used, but only if the conditions as
per the description apply.

2. If conditions do not apply, other suitable RetCodes are selected in accordance
with the definition in the XML: Object RetCode 0:66 (OCIT-O_Basis_vv.xml).

www.ocit.org

OCIT-O_Protokoll_V2.0_A04 Page 31 of 70 OCIT Developer Group (ODG)

3. If multiple RetCodes apply here or appear suitable, the selection is carried out
according to the priorities defined in the table below. The priority of a RetCode
serves the purpose of resolving ambiguities at the OCIT-O interface. If the
conditions apply for multiple RetCode values, then the RetCode with the
numerically higher priority is to be sent.

The RetCodes not in color in the table are generated by the application and sent via
the line.

The green-color RetCodes in the table are generated by BTPPL Lib and sent via the
line.

The gray-color RetCodes in the table are generated by the local BTPPL entity and
not sent via the line. These RetCodes therefore have a higher priority than the
RetCodes of the application. Between the application and BTPPL Lib, RetCodes can
arise locally even with different priorities.

Note: Traffic signal controllers with OCIT-O TSC of Version 2.0 Issue 3 or higher
must manage the Retcodes in accordance with the table. In case of interoperability
problems the systems involved are to be tracked accordingly.

Priority Name Description Valu
e

0 OK Method executed successfully 0

2 NO_SF List does not contain second frame that fulfills condition 1000

3 SF_NOFOLLOW Second frames are supplied correctly and no subsequently
entered frames are in the list

1002

4 SF_FOLLOW Second frames are supplied correctly and other second
frames, which were entered after these, are in the list

1001

5 ERROR General error 1

10 PARAM_INVALID Faulty parameter 32

11 NOT_INACTIVE The list must not be started in order to execute this method. 1003

12 BUFFER_TOO_SMALL BUFFER_TOO_SMALL: Supplied if the second frame is so
large that fewer than four entries can fit in the ring buffer

1005

13 CYCLE_TOO_SHORT CYCLE_TOO_SHORT: The specified cycle time is too short. 1007

14 UNKNOWN_OP UNKNOWN_OP: Operator not supported 1008

15 NO_EVENT NO_EVENT: The event cannot be entered for whatever
reason

1009

16 NOT_POSSIBLE If the request type does not permit request elements, such as
with messages R09 and AMLi, or no further requests or
request elements possible

1006

20 ILLEGAL_STATE The transaction is in the illegal state 38

25 NOT_CONFIGURED The addressed function is not available as it is not configured 34

OCIT-O_Protokoll_V2.0_A04 Page 32 of 70 OCIT Developer Group (ODG)

Priority Name Description Valu
e

29 EXISTS_ALREADY Element already exists, function was not executed 36

30 INTERVAL_INVALID Invalid interval specified or interval already expired 33

45 ACCESS_DENIED Access to the desired function is not permitted. 35

46 ERR_METHOD BTPPL: Method number specified is not known/implemented. 8

47 ERR_PATH_VAL No instance of specified path (value) found 17

48 ERR_PATH_LEN Unexpected path length 16

49 ERR_TYPE BTPPL: Type, consisting of ODG MemberId and OType, is not
known/implemented.

7

50 ERR_DEST_UNKNOWN BTPPL: unknown destination address 9

90 TOO_MANY Function could not be executed because of limited resources 37

100 ERR_BAD_CALLCHK BTPPL: The method was called with an incorrect checksum 2

101 ERR_BAD_CALLTIME BTPPL: The time of the call does not match the local time
precisely by 30 minutes

3

102 ERR_BAD_RETCHK BTPPL: Generated following transmission from the sender if
the checksum on the return telegram does not match.

4

103 ERR_BAD_RETTIME BTPPL: Generated following transmission from the sender if
the time of the return block does not match, but the send
block had the correct time. The command was already
performed in this case, but the time needs to be synchronized.
If the code occurs again following synchronization of the time,
this indicates a hacker or bug.

5

105 ERR_FRAME BTPPL: Invalid header (length, flags, fletcher checksum) 13

200 ERR_SYNCHRONIZE BTPPL: Generated following transmission from the sender if
the time of the return block does not match and the command
already had an incorrect time from the send block. This code
is not used between the controller and the central device.

6

200 OSERR General system error 18

201 ERR_DEST_UNREACHABLE BTPPL: Destination known but cannot be reached at present 10

202 ERR_TIMEOUT BTPPL: Function was canceled with timeout 11

203 ERR_NOREQUEST BTPPL: No request found to send the response 12

204 OSERR_SOCKET System error creating socket 19

205 OSERR_BIND System error with bind 20

206 OSERR_CONNECT System error with connect 21

207 OSERR_WRITE System error with write 22

208 OSERR_READ System error with read 23

OCIT-O_Protokoll_V2.0_A04 Page 33 of 70 OCIT Developer Group (ODG)

Priority Name Description Valu
e

209 OSERR_LOCK System error with mutex grab/release 24

5.6.3 DNS cache invalidation

It is possible that during operation the IP address of the field device is changed (but
not its host name). BTPPL should not make a DNS query for every command
because this query is resources-consuming and time-consuming. Instead, the results
of the query should be cached. In BTPPL a DNS cache invalidation must take place
in order to ensure the consistency of the cache. As soon as this takes place, the
corresponding addresses must be re-determined.

 When receiving a transmission with a wrong SHA-1 password

 After multiple timeouts

 At startup

5.7 Securing the transmission for OCIT outstations protocol

 OCIT outstations telegrams are protected against data corruption and external
attacks through various measures:

 OCIT-O passwords, which every communication partner has supplied.

 The transmission is protected against data corruption as well as misdirected
UDP packets or external attacks via a Fletcher algorithm.

 Increased protection against external attacks is needed when transmitting
security-sensitive data and it is guaranteed by an SHA-1 algorithm (which
calculates the checksum from the passwords and the contents of the data).

 The transmission protection against data corruption is carried out at the
transport level (and when using PPP even in the data-link layer) via the
protocol for each case

5.7.1 OCIT-O passwords

Passwords, which are used by the relevant recipients for identification and
verification of the sender and for SHA-1 transmission protection (see section 5.7.3),
are used for transmission protection. The use of this process has the benefit, that
system access ways and other connections do not have to be protected by a firewall.

Field devices know at least the following OCIT-O passwords:

 password of the field device itself (pre-programmed with "OCITPASSWORT" by default)

 password of the central device (pre-programmed with "OCITPASSWORT" by default)

OCIT-O_Protokoll_V2.0_A04 Page 34 of 70 OCIT Developer Group (ODG)

 password of the replacement central device

 password of the central system access

 password for unknown IP addresses (default)

For each of these connections a pair of passwords is required:

 the password of the device itself (password of the field device, the central
device or the other units)

o for identifying the sender and

o for SHA-1 data protection of outbound communication.

 The password of the respective communication partner

o for verifying the admissibility of the incoming communication and

o for identifying the sender of request telegrams.

The password of the sender is used as the password for request and message
telegrams; for respond telegrams it is the password of the sender of the
corresponding request telegram.

Because by definition a central device unit can change the passwords in the field
devices, it is necessary to provide the relevant password pair for every field device
there. More on this in the document OCIT-O Basis, system object RemoteDevice

Note: Preferably all field devices within a central system use the same field device
password.

5.7.1.1 Installation of a new device

 The device is sent out ex works with the standard OCIT-O password,
"OCITPASSWORT".

 An OCIT-O password P1 is stored in the central device. (For changing the
passwords, a second entry, P2, is created in the central device, which normally
is occupied with the OCIT-O password P1). The OCIT-O password P1 when
sending out the central device is also preset with "OCITPASSWORT".

 As its first command the central device performs a change in the standard
OCIT-O password in the device to the password that is used in the central
device (for procedure see below).

5.7.1.2 Changing the OCIT-O password of a field device

The OCIT-O password is only changed from the central device. Changing takes
place as follows:

 The central device sends a password change command to the device

OCIT-O_Protokoll_V2.0_A04 Page 35 of 70 OCIT Developer Group (ODG)

 The device switches out the password and immediately uses the new OCIT-O
password. The response is not transmitted with protection. All the following
responses and all the commands of the device to the central device are to be
encoded with the new OCIT-O password.

 After the call the central device only accepts responses with the new OCIT-O
password.

All the notifications remaining in the retry cache are re-encoded with the new OCIT-O
password.

5.7.2 Transmission protection through the Fletcher algorithm

Transmission protection against data corruption is attained for all OCIT outstations
telegrams using a Fletcher algorithm (checksum). Beyond that, misdirected UDP
packets can be eliminated with it, for example. The Fletcher algorithm is an integral
part of the OCIT outstations protocol.

All packets with an incorrect Fletcher checksum are rejected.

The Fletcher algorithm is a simple but effective algorithm, which requires only 2 bytes
per packet. It is a little-known algorithm, which makes ad-hoc attacks more difficult:

unsigned char c0, c1;

void initialize_fletcher()

{

 c0 = c1 = 0;

}

void do_check(unsigned char in byte)

{

 c0 = (c0 + inbyte) % 255;

 c1 = (c1 + c0) % 255

}

short fletcher()

{

 unsigned char hi_fletcher = 255 - ((c0 + c1) % 255);

 unsigned char lo_fletcher = c1;

 return ((short)hi_fletcher << 8) | lo_fletcher;

}

char check_fletcher()

{

 return (c0 == 0) && (c1 == 0);

}

To run the algorithm prior to the calculation of the checksum, initialize_fletcher must
be called up, then per byte of actual data do_check called up and, finally, the
checksum calculated with Fletcher's algorithm. To verify the checksum, do_check is
preformed across the block of actual data and (!) the Fletcher checksum is
performed, and then the checksum is checked for correctness with check_fletcher.

In assembler the algorithm is even more efficient because the do_check operation
can be resolved this way, for example, in 8086 Assembler:

OCIT-O_Protokoll_V2.0_A04 Page 36 of 70 OCIT Developer Group (ODG)

MOV al, c0 ; load c0 into the accu

ADD al, inbyte ; Carry flag is set if the event is >= 256

ADC al, 01 ; result is right if the sum is 255 or 510, otherwise 1 is too large

 ; If the result is correct, the carry flag is also set

ADC al, FF ; -1 if the carry flag is not set, otherwise +-0

MOV c0, al ; save c0

ADD al, c1 ; add on c1

ADC al, 01 ; see above

ADC al, FF ; see above

MOV c1, al ; save c1

The algorithm can of course be further improved. The example uses only 8-bit
operations and is thus suitable for migration to an embedded controller.

All OCIT outstations telegrams are 'secured' with Fletcher's Algorithm described
above. This leads to the few arbitrarily straying UDP telegrams that originate from
non-OCIT software being accepted as valid telegrams and bringing goings-on into
disarray. Moreover, attempts at attack are unlikely to be performed by non-
professionals.

5.7.3 Transmission protection through the SHA-1 algorithm

The security-sensitive communication, such as new basic supplies or operating
messages, is additionally protected against intentional access by an SHA-1
algorithm. SHA-1 is a checksum method that identifies and rejects any unauthorized
transmission. In a different context SHA-1 is also used for the formation of digital
signatures and is recognized as safe worldwide. The SHA-1 algorithm is not used for
encryption but rather only for checksum calculation (encryption algorithms require a
separate export permission in many countries). The probability that an incorrect
packet is identified as correct is less than 10

-48
.

The SHA-1 algorithm is free of patent rights according to the information currently
available.

(Documentation at http://csrc.nist.gov/cryptval/shs.html)

Further details:

 According to currently available information, the chance of constructing a
packet through knowledge of previously transmitted packets is negligible
compared to the likelihood of correctly guessing the OCIT-O password.

 It is therefore assumed that no eavesdropper is tracking the data during the
installation stage of the device.

 During normal data transmission the data exchange can be read along the
way.

 It should be prevented that valid data packets be collected over the course of
days and then transmitted to the device.

http://csrc.nist.gov/cryptval/shs.html

OCIT-O_Protokoll_V2.0_A04 Page 37 of 70 OCIT Developer Group (ODG)

 Secured data packets that are delayed for longer become automatically invalid.

 The actual data transmission takes place in plain text in order to facilitate
debugging and not infringe upon cryptology bans of certain countries.

 Protection is carried out via an OCIT-O password that can be changed from
the central device. An eavesdropper who does not know the old OCIT-O
password cannot learn the new OCIT-O password.

5.7.3.1 Calculation of the checksum

Before the checksum is calculated, the UTC-field of the BTPPL block is filled with the
current system time.

To calculate the checksum the SHA-1 algorithm is run on the following block:

 OCIT-O password of the sender (no length byte, ISO8859-1 encoding) filled up
with binary 0 to 512 bits. (The algorithm compresses in 512-bit steps, making it
possible for the first block to be pre-calculated and saved).

 BTPPL data block starting with and including HdrLen up to and including UTC
(LSB).

 OCIT-O password of the sender (no length byte, ISO8859-1 encoding).

The checksum calculated in this way is written into the SHA-1 data field of the
BTPPL data block. Then Fletcher's algorithm is performed over the entire BTPPL
data block starting with the field HdrLen (offset 4 for TCP, offset 0 for UDP).

5.7.3.2 Transmitting a command

Commands can be transmitted in three different security steps:

1.) SHA-1 for request and respond (high security)
2.) SHA-1 for request but not for respond (medium security)
3.) No SHA-1

With SHA-1-protected commands:

 For every command that is saved as security-sensitive in the OCIT outstations
type file the checksum is performed with OCIT-O password P1 and added on
to the end of the parameter set.

 The recipient also calculates the checksum for every security-sensitive
command and compares its calculated checksum to the transmitted checksum.

 If the two values differ, the command is rejected with an error and a message
is sent to the central device.

 The recipient compares whether the time that is transmitted in the command
differs from the internal time by more than ± 30 minutes. If the time is different,

OCIT-O_Protokoll_V2.0_A04 Page 38 of 70 OCIT Developer Group (ODG)

the command is rejected with an error and a message is also sent to the
central device.

 The response to the command is also provided with the checksum and
returned to the sender. The same OCIT-O password that was also used for the
request is used for the password.

 The central device compares the checksum with the OCIT-O password for the
device. If this comparison fails, the feedback message is interpreted as
incorrect.

 The local time is included in the response for the incorrect time. This case
should not occur because the devices should always have the correct time. In
order to nevertheless be able to send commands in such a case, the client
must call up an unsecured GetTime of the system object and adjust to the
wrong time upon the command.

5.7.3.3 Return codes used by the security protocol

The following basic return codes are generated/used by the security protocol.

Mnemonic Numbe
r

Description

ERR_BAD_CALLCHK The function was called with an incorrect
checksum Indicates hacker, bug or wrong OCIT-
O password.

ERR_BAD_CALLTIM
E

 The time of the call does not match the local
time precisely by 30 minutes

ERR_BAD_RETCHK Generated following transmission from the
sender if the checksum on the return telegram
does not match. Indicates hacker, bug or wrong
OCIT-O password.

ERR_BAD_RETTIME Generated following transmission from the
sender if the time of the return block does not
match, but the send block had the correct time.
The command was already performed in this
case, but the time needs to be synchronized. If
the code occurs again following synchronization
of the time, this indicates a hacker or bug.

ERR_SYNCHRONIZE Generated following transmission from the
sender if the time of the return block does not
match and the command already had an
incorrect time from the send block. This code is
not used between the controller and the central
device. If the code occurs again following

OCIT-O_Protokoll_V2.0_A04 Page 39 of 70 OCIT Developer Group (ODG)

Mnemonic Numbe
r

Description

synchronization of the time, this indicates a
hacker or bug.

5.8 Checking TCP channel

To check whether the channel is still open, the client or the server can send a test
telegram via the TCP channel. The test telegram is simply 4 bytes of zeros in a row.
Because BTPPL expects the length of a subsequent packet in this position (in this
case, therefore, 0) the test telegram can be easily incorporated.

OCIT-O_Protokoll_V2.0_A04 Page 40 of 70 OCIT Developer Group (ODG)

6 Typification

6.1 Interface objects

It is an idea of OCIT outstations to define the interface in formal machine-readable
form. For this the following meta-model is used:

6.1.1 Basic data types

German English

Ausgabeparameter Output parameters

Eingabeparameter Input parameters

Vererbung Inheritance

In SimpleDomain.Basetypename (entry BASETYPENAME) the following basic data
types can be indicated:

Basic data

type

Data type in

C

Maximum valid

range

Transmission type Comment

BYTE Signed char -128 – +127 transmitted as 1 byte

(without alignment)

8 bits signed

UBYTE Unsigned

char

0 – 255 transmitted as 1 byte

(without alignment)

8 bits unsigned

SHORT Signed short -32,768 – 32,767 transmitted as 2 byte, high

byte first (without

16 bits signed

OCIT-O_Protokoll_V2.0_A04 Page 41 of 70 OCIT Developer Group (ODG)

Basic data

type

Data type in

C

Maximum valid

range

Transmission type Comment

alignment)

USHORT Unsigned

short

0 – 65,535 transmitted as 2 byte, high

byte first (without

alignment)

16 bits unsigned

LONG Signed long -2,147,483,648 –

2,147,483,647

transmitted as 4 byte, high

byte first (without

alignment)

32 bits signed

ULONG Unsigned

long

0 –

4,294,967,295

transmitted as 4 byte, high

byte first (without

alignment)

32 bits unsigned

FLOAT Float -1E38 – 1E38 Encoding like encoding of a

single-float in 4 bytes in

CDR but without alignment

32-bit floating-point number

DOUBLE Double -1E308 – 1E308 Encoding like encoding of a

single-float in 8 bytes in

CDR but without alignment

64-bit floating-point number

STRING struct {

USHORT len,

char str[] }

Length word of the following field (2 BYTES)
2
, null-terminated ANSI string

(ISO 8859-1 [Latin-1]) control characters ignored

BLOB struct{

ULONG sz,

BYTE data[] }

Binary large object in which the data are transmitted opaque.

Table 1: Basic data types

Inheritance in the meta-model (ENTRY BASEDOMAIN in StructDomain) for:

 DynAttribut
The dynamic attributes are inherited, d.h. a specialized class has all dynamic
attributes of its base class(es).

 STDMETHODS
Standard methods are not inherited. Reason: The signature of Get, Update
depends on the dynamic attributes of the domain.

 Methods
are inherited; the method numbers are however to be indicated in their entirety.
It is to be noted here that they must be lower than the largest standard method
number (= 15), greater than MAXMETHODNR of the base class and lower
than MAXMETHODNR of their own class.

 Path
is inherited. If the base class defines a path, then the specialized class has at
least the same path. If the BASEDOMAIN is already an OBJTYPE, then the
specialized domain must also be a OBJTYPE domain. In the OCIT outstations
type file the path is not indicated again.

2
 For the string "abc" the length is 4.

OCIT-O_Protokoll_V2.0_A04 Page 42 of 70 OCIT Developer Group (ODG)

6.1.2 Meta-element DECL

The element REFERENCE points to another type (domain) and can therefore
reference all the permitted DOMAIN types (NUMBERDOMAIN, STRINGDOMAIN,
STRUCTDOMAIN, OBJTYPE, etc.).

The elements EXTENSIBLE and REFPATH or REFPATH_DATA indicate what is
transmitted in the place of this DECL of the referenced type.

REFPATH and REFPATH_DATA are alternatively permitted but only for references
to object types (OBJTYPE domains). If neither REFPATH nor REFPATH_DATA is
indicated, the data of the referenced type are transmitted alone. for SimpleDomain
this is the datum of the type itself; for StructDomain it is the dynamic attributes that
may be present.

6.1.3 REFPATH

If REFPATH is set, a reference in the form of a path (hence the name) is transmitted
to the object, which is specified in the DECL. If, for example, a pointer to a relative
intersection is needed, in the DECL the object "relative intersection" is specified and
REFPATH is set. Depending on the value specified by REFPATH (see further below)
a certain part of the path of the referenced object may therefore be transmitted.
REFPATH may only be set if REFERENCE points to an OBJTYPE domain (only
OBJTYPE domains have a PATH).

An empty REFPATH / REFPATH_DATA without a value is not permitted.

The path is unique worldwide. It starts with

 Operator—Domain (string)

 ZNr (2 bytes)

 FNr (2 bytes)

and then differs depending on the object type. In the case of the relative intersection
exactly one byte follows with the relative intersection number. For signal groups two
values follow: The relative intersection number and the signal group number. The
path is therefore hierarchically structured.

Because the first part of the path in virtually all cases is redundant, for REFPATH it
can be indicated how many elements can be adopted from the embedded object and
therefore not transmitted explicitly. If a list of AP values (which are embedded in the
signal program command) is therefore addressed as a command to a signal program
of an intersection controller (the command is embedded in the BTPPL telegram), the
reference is divided up as follows:

 The BTPPL header contains operator domain (implicitly), ZNr and FNr

 The path of the BTPPL header addresses the signal program command via
relative intersection number and signal program number

OCIT-O_Protokoll_V2.0_A04 Page 43 of 70 OCIT Developer Group (ODG)

 Every individual AP value is addressed only by name.

REFPATH can assume positive and negative values. If REFPATH >= 0, the number
of elements (hierarchical path part) that are adopted from the embedded object is
encoded. The rest of the path elements of the target object is transmitted in place of
the reference.

The most important values are:

0: No implicit acquisition of path portions, i.e. all path elements of the target
object operator domain, ZNr, FNr, as well as all other path parts are
transmitted.

1: Operator domain is implicitly adopted. ZNr, FNr and the path extension of
the
referenced object are transmitted.

3: Device-relative. Operators, ZNr, FNr are implicitly adopted, the
path extension within the field device is transmitted

4: In reference to the relative intersection, if the embedded object is related
to the relative intersection at all. The path parts are transmitted to the
relative intersection hierarchically

5: Object-related to the enclosing object An enclosing object
references a self-contained object. All the additional hierarchical path
parts that are not already part of the enclosing object are transmitted from
the referenced object.

If REFPATH < 0, this means: As a reference, only the following n-last values are
transmitted. For -1 for example, the reference is constructed using only the last path
element of the target object; for -2 using only the last two path elements of the target
object. etc.

If REFPATH is not set, no reference is transmitted (i.e. only the data as
demonstrated in 6.1.2.).

6.1.3.1 REFPATH_DATA

REFPATH_DATA transmits the path like REFPATH but adds on additional data
elements to the end of the path, i.e. the dynamic values that may be present.
Numbering is the same as for REFPATH.

6.1.3.2 EXTENSIBLE

Note: Functioning has been modified compared to previous version (DataLen = 2 or
4 bytes).

EXTENSIBLE is indicated if different object types that originated from data type
indicated in the DECL are transmitted. The Element EXTENSIBLE can be indicated
without content (e.g.: <EXTENSIBLE/>) or with the numeral '4' as content. In the

OCIT-O_Protokoll_V2.0_A04 Page 44 of 70 OCIT Developer Group (ODG)

case of the former, the DataLen is transmitted with 2 bytes as USHORT; if the
content is 4, the DataLen is transmitted with 4 bytes as ULONG.

For set EXTENSIBLE three elements are placed before REFPATH if REFPATH or
REFPATH_DATA is set:

 Length of the data of the reference transmitted (incl. Member/OType) in bytes
(value range 4 - 255)

 Member (2 bytes)

 OType (2 bytes)

the path of the type given by Member and OType follows.

If REFPATH_DATA the items below also follow:

 DataLen, length of the following data in bytes encoded as 2 or 4 bytes (see
above).

 Data of the type given by Member, OType (for SimpleDomain this is the datum
of the type itself; for StructDomain it is the dynamic attributes that may be present).

 If EXTENSIBLE is set without REFPATH or REFPATH_DATA, in place of this DECL
the following is transmitted:

 Member (2 bytes)

 OType (2 bytes)

 DataLen, length of the following data in bytes encoded as 2 or 4 bytes (see
above).

 Data of the type given by Member, OType (for SimpleDomain this is the datum
of the type itself; for StructDomain it is the dynamic attributes that may be present).

6.1.3.3 MINCOUNT MAXCOUNT

The fields MINCOUNT and MAXCOUNT indicate the number of elements declared in
this DECL. Both fields are optional, if they are missing, then
MINCOUNT=MAXCOUNT=1, i.e. always exactly one element of the type indicated in
REFERENCE. MAXCOUNT must always be greater than or equal to MINCOUNT.

If MAXCOUNT is greater MINCOUNT, then an array is concerned. In this case the
number of actual elements is placed at the front. This number is a UBYTE if
MAXCOUNT - MINCOUNT < 256; otherwise it is a USHORT.

PATHPART may not contain any arrays, i.e. MINCOUNT=MAXCOUNT=1.

OCIT-O_Protokoll_V2.0_A04 Page 45 of 70 OCIT Developer Group (ODG)

6.1.4 Meta-element MSGPART

The meta-element MSGPART is only a special STRUCTDOMAIN for which three
ClassAttributes are pre-defined: CATEGORY, DEGREE and FORMAT. CATEGORY
contains the message category as a number, DEGREE contains the
MessageDegree as a number and FORMAT contains the format string.

6.1.4.1 Format strings

Note: Functioning has been expanded compared to previous version (format string
for checksums).

Within OCIT it is possible to extend the standard to include manufacturer-specific
objects and methods. To make these extensions also accessible to other
manufacturers when using manufacturer-specific systems, these objects are to be
written completely as an xml file (<manufacturer>AddOns.xml). The nomenclature
specified in the OCIT standard is to be used here. This is especially relevant for the
secondary messages. The format must be adhered to exactly in order for these to be
able to be automatically parsed and processed by the central device for display and
for plain-text display of these messages to be possible on the interface. Only a short,
descriptive text is stored for the message.

It can contain any text as well as values of the message. However, because a
message generally has multiple message parameters that contain different values,
the value for runtime must be inserted into the format text. In order to indicate which
value of a message parameter is to be inserted, the name of the parameter must be
present in the format text between @ symbols.

The names or designations of the message parameters that can be inserted into a
format string with @...@ must match the resulting "path" for the value to be
presented (designated as ValuePath in the following). In the simplest scenario
ValuePath is just the simple name of the message parameter. Often, however, a
value is addressed to multiple object references; this results in a ValuePath
separated by a dot. The ValuePath is presented, for example, in the html
documentation of the type tool.

Example: A notification has the message parameter with the ValuePath

a.b.c has a message parameter with the value 4711

In the grammar, the format text must then look as follows:

<FORMAT>The value is @a.b.c@</FORMAT>

After evaluation of the format string, the format text then appears as follows:

The value is 4711

Particularity for array values:
If a message contains an array value, it too can be displayed in the format text. If a
notification contains, for example, the following parameter and values

OCIT-O_Protokoll_V2.0_A04 Page 46 of 70 OCIT Developer Group (ODG)

x.y[0].z = 4712
x.y[1].z = 4713

then the values can be displayed with the following format text:

<FORMAT>Array values @x.y[].z@</FORMAT>

After evaluation of the format string, all the values of array are displayed:

Array values [4712 4713]

The following representation is used for checksums:

The generated checksums (20 bytes) should be displayed in 10 groups of 4
hexadecimal characters each for reasons of readability. Example: CAFE-1234-
ABCD-5678-A1B2-C3D4-1A1D-1234-CAFE-ABBA

6.1.5 METHOD

This meta-element describes a method. A method has a unique number within the
interface or OBJTYPES (and its base domains) in which it can be found.

A method has input and output parameters which are declared in the entries IN and
OUT. BTPPL transmits the input parameters with a request; the output parameters it
transmits with a respond telegram.

In the entry AUTH it is indicated whether:

 Request and respond (AUTH=Full)

 Only the request (AUTH=Request)

 Neither request nor respond (AUTH=None)

Authentication is to be performed with SHA-1.

Note: In the OCIT-O versions 1.0 and 1.1 the type of authentication cannot be
selected for all methods. If the tag AUTH is missing in the definition of the methods,
it is perceived as AUTH=None.

6.1.6 CLASSATTRIBUTE

The elements are freely definable attributes of a StructDomain according to the
key/value principle. A CLASSATTRIBUTE consists of the tag NAME, the key and the
tag VALUE, the value, and an additional description of any kind. The meaning
dependents on the concrete type (domain), i.e. a CLASSATTRIBUTE of a
MSGPART type usually has a different meaning than, for example, that of a job

OCIT-O_Protokoll_V2.0_A04 Page 47 of 70 OCIT Developer Group (ODG)

(OBJTYPE). Within a type (StructDomain, MSGPART or OBJTYPE) a key is unique.
They are therefore known and valid for all object entities of a type. These attributes
are used for storing in machine-readable form the definitions that are not to be
described in the specifications in the usual form of the XML meta-model. The content
of the VALUE tag depends on the key (CLASSATTRIBUTE type, tag NAME). The
use of the attributes is specified below.

6.1.6.1 FRAME

(Key is defined for OBJTYPE, task): Specifies the task frame that is written by this
task into the second frame. The VALUE tag indicates the reference to
Member/OType of a Structdomain to be derived from 0:290, which describes the
frame format. The referenced domain describes a complete task frame. The task
frame is to be indicated with <Member#>:<TaskFrame_TypeName> (Example:
0:MVTaskFrameR09). The attribute can be used for tasks for which the data format
is static, e.g. RBL telegrams.

6.1.6.2 FRAME_DATA

(Key is defined for OBJTYPE, TE): Specifies the useful data that are written by this
task element into the task frame. The VALUE tag indicates the reference to
Member/OType of a domain that describes the data format in the task frame. If a
SimpleDomain is referenced, its scalar value is written into the TF. For a
StructDomain its dynamic attributes are written into the TF. (Example:
1:TIMEINTERVAL). The attribute can be used for the description of the data format
of tasks in which the task frame format is calculated dynamically from the
assignment of the task elements to the task. The CLASSATTRIBUTE is thus
assigned to task elements.

6.1.6.3 CATEGORY

(Key is defined for MSGPART): Assigns a sub-category to a message, e.g.
hardware, transmission system, user program.

6.1.6.4 DEGREE

(Key is defined for MSGPART): Specifies the severity level of a message.

6.1.6.5 FORMAT

(Key is defined for MSGPART): Specifies a format text for the presentation of the
message. The format string can contain parameters of a MSGPART element that are
defined within DECL tags

6.2 Data definitions

The data definitions used in OCIT outstations break down into OCIT outstations
objects and manufacturer objects. For their exact description, the XML standard
supported by the well-known software manufacturers (Microsoft, Oracle, etc.) but

OCIT-O_Protokoll_V2.0_A04 Page 48 of 70 OCIT Developer Group (ODG)

also by free software (Linux) is used. More in-depth documentation can be found at
http://www.w3c.org/xml for example.

6.2.1 OCIT outstation DTD file

The file OCIT-O-DTD_Vx.x.dtd describes the structure of all the TYPE files used
within the defined scope of OCIT outstations. Also see section 6.2.3.

6.2.2 OCIT outstations objects TYPE files

The OCIT outstations objects are described through TYPE files:

 The file OCIT-O-Basis-TYPE_Vx.x.xml contains the basic definitions

 The file OCIT-O-Feldgeräte-TYPE_Vx.x.xml contains the definitions for
particular types of field devices.

6.2.3 Structure of the TYPE files

All the type files are structured as follows. The main tag is OCT (OCIT TYPE).

<!ELEMENT NAME (#PCDATA)>

<!ELEMENT DESCRIPTION (#PCDATA)>

<!ELEMENT MIN (#PCDATA)>

<!ELEMENT MAX (#PCDATA)>

<!ELEMENT VALUE (#PCDATA)>

<!ELEMENT MEMBER (#PCDATA)>

<!ELEMENT OTYPE (#PCDATA)>

<!ELEMENT NO_TCP (#PCDATA)>

<!ELEMENT BASETYPENAME (#PCDATA)>

<!ELEMENT DOMAIN (NAME, DESCRIPTION, MEMBER, OTYPE)>

<!ELEMENT CLASSATTRIBUTE (NAME, DESCRIPTION, VALUE)>

<!ELEMENT REFERENCE (MEMBER, NAME)>

<!ELEMENT BASEDOMAIN (MEMBER, NAME)>

<!ELEMENT MINCOUNT (#PCDATA)>

<!ELEMENT MAXCOUNT (#PCDATA)>

<!ELEMENT REFPATH (#PCDATA)>

<!ELEMENT REFPATH_DATA (#PCDATA)>

<!ELEMENT EXTENSIBLE (#PCDATA)>

<!ELEMENT DECL (NAME, DESCRIPTION, REFERENCE, (MINCOUNT?, MAXCOUNT)?, (REFPATH|REFPATH_DATA)?,

EXTENSIBLE?)>

<!ELEMENT STRUCTDOMAIN (NAME, DESCRIPTION, MEMBER, OTYPE, BASEDOMAIN?, DECL*,

CLASSATTRIBUTE*)>

<!ELEMENT DEGREE (#PCDATA)>

<!ELEMENT CATEGORY (#PCDATA)>

<!ELEMENT FORMAT (#PCDATA)>

<!ELEMENT MESSAGEPART (NAME, DESCRIPTION, MEMBER, OTYPE, BASEDOMAIN?, DECL*, CLASSATTRIBUTE*,

CATEGORY, DEGREE, FORMAT)>

<!ELEMENT NULLVAL (#PCDATA)>

<!ELEMENT RESOLUTION (#PCDATA)>

<!ELEMENT UNIT (#PCDATA)>

<!ELEMENT NUMBERDOMAIN (NAME, DESCRIPTION, MEMBER, OTYPE, BASETYPENAME, MIN?, MAX?, NULLVAL?,

RESOLUTION?, UNIT?)>

<!ELEMENT MAXLEN (#PCDATA)>

<!ELEMENT STRINGDOMAIN (NAME, DESCRIPTION, MEMBER, OTYPE, BASETYPENAME, MAXLEN)>

<!ELEMENT ENUMENTRY (NAME, DESCRIPTION, VALUE)>

<!ELEMENT BASEENUM (MEMBER, NAME)>

http://www.w3c.org/xml

OCIT-O_Protokoll_V2.0_A04 Page 49 of 70 OCIT Developer Group (ODG)

<!ELEMENT ENUMDOMAIN (NAME, DESCRIPTION, MEMBER, OTYPE, BASETYPENAME, MAX, BASEENUM?,

ENUMENTRY*)>

<!ELEMENT IN (DECL+)>

<!ELEMENT OUT (DECL+)>

<!ELEMENT AUTH (#PCDATA)>

<!ELEMENT NR (#PCDATA)>

<!ELEMENT MAXMETHODNR (#PCDATA)>

<!ELEMENT METHOD (NAME, DESCRIPTION, NR, AUTH?, IN?, OUT?)>

<!ELEMENT INTERFACE (NAME, DESCRIPTION, MEMBER, MAXMETHODNR, METHOD*)>

<!ELEMENT PATHPART (NAME, DESCRIPTION, REFERENCE, (REFPATH|REFPATH_DATA)?, EXTENSIBLE?)>

<!ELEMENT METHODNR_OFFSET (#PCDATA)>

<!ELEMENT STDMETHOD (#PCDATA)>

<!ELEMENT IMPLEMENTS (NAME, MEMBER, METHODNR_OFFSET)>

<!ELEMENT OBJTYPE (NAME, DESCRIPTION, MEMBER, OTYPE, BASEDOMAIN?, DECL*, CLASSATTRIBUTE*,

PATHPART*, STDMETHOD*, (MAXMETHODNR, METHOD*)?, IMPLEMENTS*)>

<!ELEMENT MANUFACTURER (#PCDATA)>

<!ELEMENT DEVICETYPE (#PCDATA)>

<!ELEMENT VERSION (#PCDATA)>

<!ELEMENT SUBVERSION (#PCDATA)>

<!ELEMENT OCT (MANUFACTURER, DEVICETYPE, VERSION, SUBVERSION, NO_TCP?, (DOMAIN | NUMBERDOMAIN

| STRINGDOMAIN | ENUMDOMAIN | STRUCTDOMAIN | MSGPART | INTERFACE | OBJTYPE)*)>

<!ELEMENT OCIT_TYPE_DATEI (OCT+)>

The meaning of the individual elements should be explained with an example in the
following. The example has absolutely no connection to the real OCIT outstations
structures; it serves merely to demonstrate the structure of the OCIT outstations
Type file. The comment in each case comes after the line. In order not to make the
description too long, parts irrelevant to understanding, i.e. all things that repeat, are

depicted as [...].

<?xml version="1.0" encoding="ISO-8859-1"?>

This line merely indicates that an XML 1.0 file encoded in the character set ISO-8859-1 is concerned. The line remains the
same for all the data supplies

<!DOCTYPE OCIT_TYPE_DATEI SYSTEM "ocit.dtd">

Reference to the structure information used. The entry is missing, any XML files are accepted

<OCIT_TYPE_DATEI>

<OCT>

The actual beginning of the OCIT type file

 <MANUFACTURER>Ampelpower Ltd.</MANUFACTURER>

 Manufacturer of the intersection controller. The manufacturer in the example is fictitious like the entire supply file.

 <DEVICETYPE>Standard traffic light</DEVICETYPE>

 Type of the intersection device

 <VERSION>1</VERSION>

 Corresponding OCIT version

 <SUBVERSION>15</SUBVERSION>

 Manufacturer-specific numbering

 <NUMBERDOMAIN>

 Numerical data type that is used later. Integer and floating-point number types are specified with NUMBERDOMAIN.
 If only the individual values have a meaning, instead of INTDOMAIN (see below) an ENUDOMAIN is there

<NAME>ZEITSTEMPEL_UTC</NAME>

 Name of the data type. Names such as designations set up in C. That is to say, they especially cannot contain any
blanks or dots.

 <DESCRIPTION>Universal Time Coordinated</DESCRIPTION>

 Description of the data type

 <MEMBER>0</MEMBER>

Number of the manufacturer within ODG that defined the access Object. The manufacturer numbers are assigned by
the ODG Objects that are defined in the standard have the entry 0 in the Member field

 <OTYPE>48</OTYPE>

 <BASETYPENAME>ULONG</BASETYPENAME>

Basic type of the domain. The basic types allowed are BYTE, SHORT, LONG, UBYTE, USHORT, ULONG, FLOAT,
DOUBLE, STRING, WSTRING, BLOB, see Table 1: Basic data types.

<MIN>1</MIN>

 Lowest allowable number of the type

 <MAX>0xffffffff</MAX>

OCIT-O_Protokoll_V2.0_A04 Page 50 of 70 OCIT Developer Group (ODG)

 Greatest allowable number of the type. For non-C programmers: 0xF means the character "F" in hexadecimal format,
therefore 15.

 <NULLVAL>0</NULLVAL>

 Value that, if set, has the meaning that a variable with this value is not set as the content.

 </NUMBERDOMAIN>

 <ENUMDOMAIN>

 For the enumeration of values with meaning (e.g. for enum's)

 <NAME>RetCode</NAME>

 <DESCRIPTION>General return value of methods</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>66</OTYPE>

 <BASETYPENAME>USHORT</BASETYPENAME>

 <MAX>999</MAX>

 Maximum value of the ENUM range
 It is possible that certain enumerations can be used multiple times. For this there is the optional entry

BASEENUMDOMAIN that would be exactly in this position. The entry contains a reference to the already-declared
TYPE that is also an ENUMDOMAIN. If a BASEENUMDOMAIN is set, all the entries of this ENUM are adopted and
all the new values must be greater than the MAX value of the BASEENUMDOMAINS. If a BASEENUMDOMAIN is
present, even MAX and other ENTRY entries can be skipped.

 <ENUMENTRY>

 An entry for the ENUM range

 <NAME>OK</NAME>

 Designation of the task

 <DESCRIPTION>Method carried out successfully</DESCRIPTION>

 <VALUE>0</VALUE>

 The actual value. It must be lower than MAX.

 </ENUMENTRY>

 <ENUMENTRY>

 The next entry for the ENUM range. 'Any' number of entries is possible.

 <NAME>ERROR</NAME>

 <DESCRIPTION>General error</DESCRIPTION>

 <VALUE>1</VALUE>

 </ENUMENTRY>

 [...]
 </ENUMDOMAIN>

 [...]

 <STRUCTDOMAIN>

 In addition to the domain data types there are structure data types that correspond to the known structs or records in
PASCAL. Every element of a structure is then stored in a DECL field (see below). One-dimensional arrays are possible.
Multidimensional arrays are not used because these can always be declared as an array of a structure that itself is an array
and this (somewhat longer) definition has the benefit of being understandable with regard to the structure of the telegram.

 <NAME>TIMEINTERVAL</NAME>

 <DESCRIPTION>Indicates an absolute time interval</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>63</OTYPE>

 <DECL>

 <NAME>StartTime</NAME>

 <DESCRIPTION>The starting time of the interval</DESCRIPTION>

 <REFERENCE>

 A REFERENCE is a special entry that can only point to DOMAIN definitions. Ads are DOMAIN, NUMBERDOMAIN,
ENUMDOMAIN, STRINGDOMAIN, STRUCTDOMAIN, OBJTYPE. The following fields indicate that a domain
definition with the name TIMESTAMP_UTC is referenced by Odgmember 0 (=ODG).

 <MEMBER>0</MEMBER>

 <NAME>ZEITSTEMPEL_UTC</NAME>

 </REFERENCE>

 </DECL>

 <DECL>

 <NAME>EndTime</NAME>

 <DESCRIPTION>End time of the interval</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>ZEITSTEMPEL_UTC</NAME>

 </REFERENCE>

 </DECL>

 </STRUCTDOMAIN>

 <INTERFACE>

 An interface is a collection of methods that are used by multiple object types. Methods and their parameterizations are
summarized in one interface Referencing of the interface takes place through a combination of MEMBER and name.
MEMBER is number of the company that designed the interface. The list of all ODGMembers are indicated in Document 1.

 <NAME>ArchivRead</NAME>

 Name of the interface, together with MEMBER must be unique.

OCIT-O_Protokoll_V2.0_A04 Page 51 of 70 OCIT Developer Group (ODG)

 <DESCRIPTION>this interface is used for reading out archives in the field device (F) from the control center

(Z)</DESCRIPTION>

 Explanation on naming

 <MEMBER>0</MEMBER>

 <MAXMETHODNR>8</MAXMETHODNR>

Specifies the highest reserved method number of this interface. If an OBJTYPE implements an interface, all the
methods of all methods implemented by this OBJTYPE must be numbered consecutively. If the interface is expanded
and still-unoccupied method numbers are available, then the rest of the method numbers all remain the same.

 <METHOD>

 Functionality that the interface offers. There are no procedures or functions in OCIT, but rather only methods. A method
is assigned to an interface like it is here or directly assigned to an object.

 <NAME>GetOldest</NAME>

 Name of the method

 <DESCRIPTION>Read from the archive the oldest archive element and its position</DESCRIPTION>

 Explanation on naming

 <NR>1</NR>

 Number of the method. 1 - MAXMETHODNR is permitted as the number; for methods that are saved directly at the
object only the range 16 - 64535 is allowed.

 <AUTH>NO</AUTH>

 The entry AUTH can take on the following values:
None No protection of the parameter with SHA-1 checksum
Request Only the input parameters are saved with the SHA-1 checksum.
Full The input and output parameters are saved with the SHA-1 checksum.
 If the entry is missing, the input and output parameters are saved.

 <OUT>

 Range of the output parameters. Input parameters are defined in practically the same way (<IN>) and must be
defined prior to the output parameters. For input parameters the ENUMDOMAIN entry is missing. If the OUT
parameter is missing, the method is not responded to with a Request/Reply but rather with a Message. Therefore,
for methods without output parameters it cannot be ensured that the call came through. On the other hand, the call
is very quick (e.g. for visualization data, etc.)

 <DECL>

 The first OUT parameter is for the result value of the method call. The referenced data type must either be
RetCode or a specialization of it. Any errors of the underlaid protocol layers are also returned in this value.

 <NAME>ret</NAME>

<DESCRIPTION>OK, NO_ELEMENT, Error</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>RetCode</NAME>

 </REFERENCE>

 </DECL>

 <DECL>

 Additional output parameters are declared by DECL instructions as structure elements in the type.

 <NAME>PosNr</NAME>

 <DESCRIPTION>Position number of the delivered element</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>ARCHIVPOSNR</NAME>

 </REFERENCE>

 </DECL>

 <DECL>

 <NAME>Element</NAME>

 <DESCRIPTION>Oldest element</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>ARCHIV_ELEMENT</NAME>

 </REFERENCE>

 <ENCODETYPE>IdData</ENCODETYPE>

ENCODETYPE indicates the type for how the dynamic data of the referenced type (ARCHIV_ELEMENT)
are transmitted. IdData indicates that the ID and the data are transmitted. This is favorable if different
specializations (special archive elements) are transmitted. The ID consists of MEMBER and OTYPE of the
type of the transmitted data. If this field is missing, then this is equivalent to data, i.e. the data are
transmitted.

 </DECL>

 </OUT>

 </METHOD>

 <METHOD>

 [...]
 </METHOD>

 <METHOD>

 <NAME>GetElementsSince</NAME>

 <DESCRIPTION>Elements starting from the relayed time</DESCRIPTION>

 <NR>3</NR>

 <NOAUTHENTIFICATION/>

OCIT-O_Protokoll_V2.0_A04 Page 52 of 70 OCIT Developer Group (ODG)

 If this entry is set, the input and the return parameters of the method are not protected with the SHA-1 checksum. If
the entry is missing, the parameters are protected.

 <IN>

 Range of the input parameters. Input parameters are defined in practically the same way as output parameters.

 <DECL>

 <NAME>Time</NAME>

 <DESCRIPTION>Time starting at which elements are read</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>ZEITSTEMPEL_UTC</NAME>

 </REFERENCE>

 </DECL>

 [...]
 </IN>

 <OUT>

 [...]
 <DECL>

 <NAME>Elements</NAME>

 <DESCRIPTION>Elements read. Can be of different types derived from the

ARCHIV_ELEMENT.</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>ARCHIV_ELEMENT</NAME>

 </REFERENCE>

 <MAXCOUNT>1024</MAXCOUNT>

 <ENCODETYPE>IdData</ENCODETYPE>

Here an array with variable types is transmitted, i.e. first the actual number of elements is transmitted as a
UWORD and then correspondingly many elements each with ID (consisting of MEMBER and OTYPE) and
Data are transmitted.

 </DECL>

 </OUT>

 </METHOD>

 </INTERFACE>

 <OBJTYPE>

 The actual object type is declared as OBJTYPE. It consists of multiple elements: The structure of the data that can be read
using Get and written using Update is defined in the TYPE. Get and Update are system methods that do not always need
to be redeclared because they are hard-coded. With INTERFACENAME interfaces are listed that are supported by the
object. The interfaces are already declared above. In STDMETHOD it is indicated which standard functions (Create,
Delete, Get, Update) are supported. Finally, methods that only apply to this object type alone and apply to no other object
type are defined in Method. The system recognizes only public simple assignment: If multiple object types are supposed to
support the same methods, an interface should be declared.

 <NAME>MalfunctionErrorArchive</NAME>

 <DESCRIPTION>Archive for malfunctions and error messages</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>299</OTYPE>

Number of the object type (1 - 65535).
 No entry BASEDOMAIN, i.e. MalfunctionErrorArchive is not a specialization of another DOMAIN.
 No DECL entries, i.e. no own (public) data.
 No CLASSATTRIBUTES
 No PATH, i.e. per field device only one event can be assigned with MEMBER=0, OTYPE=299.
 No STDMETHODS, if no own data are defined, the standard methods are not practical either.

 <MAXMETHODNR>30</MAXMETHODNR>

 Greatest possible method number

 <IMPLEMENTS>

This object implements the interface referenced in the following. All the methods indicated in the interface are available
for this object; they therefore have to be implemented.

 <NAME>ArchivRead</NAME>

 Name of the interface whose methods support the object.

 <MEMBER>0</MEMBER>

 <METHODNR_OFFSET>15</METHODNR_OFFSET>

The method numbers transmitted in BTPPL are calculated from the number mentioned in the interface + 15;
GetElementsSince therefore has the method number 18.

 </IMPLEMENTS>

 </OBJTYPE>

 <OBJTYPE>

 <NAME>ZSignalProgram</NAME>

 <DESCRIPTION>Signal program switch request set by the control center</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>222</OTYPE>

 <DECL>

 <NAME>Current</NAME>

 <DESCRIPTION>Current or last set control center switch request</DESCRIPTION>

 <REFERENCE>

OCIT-O_Protokoll_V2.0_A04 Page 53 of 70 OCIT Developer Group (ODG)

 <MEMBER>0</MEMBER>

 <NAME>ZSO_SIGNALPROGRAM</NAME>

 </REFERENCE>

 </DECL>

 <DECL>

 <NAME>Next</NAME>

 <DESCRIPTION>Next control center switch request in terms of time</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>ZSO_SIGNALPROGRAM</NAME>

 </REFERENCE>

 </DECL>

 <PATHPART>

 Objects that are present multiple times in one field device are referenced uniquely via a path. This path is indicated
here.

 <NAME>RelIntersectionNr</NAME>

 <DESCRIPTION>Path parameter is the relative intersection number. This way multiple intersection controls are

possible within one field device.</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>OBJECT_ID_UBYTE</NAME>

 </REFERENCE>

 </PATHPART>

 <STDMETHOD>Get</STDMETHOD>

 The variables of the object type can be read but only all together. In order also to be able to process variables
separately, the object must consist of the other object types. If object types are directly integrated, it is possible to read
the entire object; for a pointer via reference only the relevant reference is returned.

 <MAXMETHODNR>32</MAXMETHODNR>

 <METHOD>

 <NAME>Switch</NAME>

 <DESCRIPTION>Accept next signal program switch request from the control center </DESCRIPTION>

 <NR>16</NR>

 <IN>

 <DECL>

 <NAME>SwitchTask</NAME>

 <DESCRIPTION>Switch task relayed from the control center</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>ZSO_SIGNALPROGRAM</NAME>

 </REFERENCE>

 </DECL>

 </IN>

 <OUT>

 <DECL>

 <NAME>ret</NAME>

 <DESCRIPTION>OK, PARAM_INVALID, INTERVALL_INVALID</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>RetCode</NAME>

 </REFERENCE>

 </DECL>

 </OUT>

 </METHOD>

 </OBJTYPE>

[...]
</OCT>

</OCIT_TYPE_FILE>

6.3 Standard interfaces

In the protocol two areas are permanently defined: The system interface and the
system object. The system interface consists of the methods 0 - 15, which contain
different functions for each object.

The system object is the object 0 of the ODG Member. The subtype is always 0. It
only contains the functions for setting and reading the OCIT-O password. These

OCIT-O_Protokoll_V2.0_A04 Page 54 of 70 OCIT Developer Group (ODG)

functions are not summarized in an interface, rather they are identified in interface 0
as special functions

6.3.1 System interface

The system interface has the following functions:

Nr. Name Input Output

0 Get ./. status +THISTYPE

1 Update THISTYPE Status

2 Create THISTYPE Status

3 Delete ./. Status + reference list

4 -
15

(reserved)

In order to use a standard method the name indicated above in the element
OBJTYPE.STDMETHOD is to be entered. Here, THISTYPE is the data structure of
the object itself incl. the data structures of all the subobjects. References are not
resolved with their contents but rather with a REFPATH structure.

3

The status is the standard status (RetCode) of the operation (see below).

In detail the functions function as follows:

6.3.1.1 Get

Get obtains no input parameters and has (next to its function status) only one output
parameter. The output parameter differs based on object type and has exactly the
structure that is indicated via the DECL entries of the DynAttribut list (and the entry of
all the BaseDomains) of the OBJTYP.

References are DECL entries that contain a REFPATH entry.

The method Get is processed without SHA-1 authentication.

6.3.1.2 Update

Update resets the value of the field. The same exact structure that was previously
delivered with Get is relayed to update as the input parameter. References with this

3
 Note: With this system it is easy to establish a browser. All more complex objects that can be handled

separately are linked only via references so that, for example, the basic information (name, number, etc.) can be

directly transmitted when reading out a field device, whereas the more complex elements such as signal programs

are stored as references and only their name must be displayed. Only once the user selects the relevant element is

the object also really loaded.

OCIT-O_Protokoll_V2.0_A04 Page 55 of 70 OCIT Developer Group (ODG)

function can also be set. Garbage collection does not take place because objects
can be referenced directly at any time.

The method Update is processed with SHA-1 authentication.

6.3.1.3 Create

New objects are created with "Create". Create functions like Update. The new
objects are automatically added correctly from the intersection controller. Create
obtains as input exactly the same values as an Update, only the object did not
previously exist.

The method Create is processed with SHA-1 authentication.

6.3.1.4 Delete

Objects are deleted with Delete. The function only allows deleting if no object points
to the element any longer. Otherwise a list of objects that consists of references to
objects that then point to the delete candidate is returned. The references are saved
as an EXTENSIBLE REFPATH. The method Delete is processed with SHA-1
authentication

OCIT-O_Protokoll_V2.0_A04 Page 56 of 70 OCIT Developer Group (ODG)

7 Example of the display of the XML in telegrams

7.1 Types, XML description
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE OCT SYSTEM "ocit.dtd">

<OCIT_TYPE_DATEI>

<OCT>

 <MANUFACTURER>odg</MANUFACTURER>

 <DEVICETYPE>Example</DEVICETYPE>

 <VERSION>1</VERSION>

 <SUBVERSION>1</SUBVERSION>

 <NUMBERDOMAIN>

 <NAME>ZEITSTEMPEL_UTC</NAME>

 <DESCRIPTION>Universal Time Coordinated</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>48</OTYPE>

 <BASETYPENAME>ULONG</BASETYPENAME>

 <MIN>1</MIN>

 <MAX>0xffffffff</MAX>

 <NULLVAL>0</NULLVAL>

 <RESOLUTION>1</RESOLUTION>

 <UNIT>Seconds</UNIT>

 </NUMBERDOMAIN>

 <NUMBERDOMAIN>

 <NAME>OBJECT_ID_UBYTE</NAME>

 <DESCRIPTION>Identification of an object</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>49</OTYPE>

 <BASETYPENAME>UBYTE</BASETYPENAME>

 <MIN>0</MIN>

 <MAX>0xfe</MAX>

 <NULLVAL>0xff</NULLVAL>

 <RESOLUTION>1</RESOLUTION>

 <UNIT/>

 </NUMBERDOMAIN>

 <STRINGDOMAIN>

 <NAME>OBJECT_NAME</NAME>

 <DESCRIPTION>Designation of an object</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>52</OTYPE>

 <BASETYPENAME>STRING</BASETYPENAME>

 <MAXLEN>255</MAXLEN>

 </STRINGDOMAIN>

 <ENUMDOMAIN>

 <NAME>RetCode</NAME>

 <DESCRIPTION>General return value of methods</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>66</OTYPE>

 <BASETYPENAME>USHORT</BASETYPENAME>

 <MAX>999</MAX>

 <ENUMENTRY>

 <NAME>OK</NAME>

 <DESCRIPTION>Method carried out successfully</DESCRIPTION>

 <VALUE>0</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERROR</NAME>

 <DESCRIPTION>General error</DESCRIPTION>

 <VALUE>1</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERR_BAD_CALLCHK</NAME>

 <DESCRIPTION>BTPPL: The method was called with an incorrect checksum.</DESCRIPTION>

 <VALUE>2</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERR_BAD_CALLTIME</NAME>

OCIT-O_Protokoll_V2.0_A04 Page 57 of 70 OCIT Developer Group (ODG)

 <DESCRIPTION>BTPPL: The time of the call does not match the local time precisely by 30

minutes.</DESCRIPTION>

 <VALUE>3</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERR_BAD_RETCHK</NAME>

 <DESCRIPTION>BTPPL: Generated following transmission from the sender if the checksum on the return

telegram does not match.</DESCRIPTION>

 <VALUE>4</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERR_BAD_RETTIME</NAME>

 <DESCRIPTION>BTPPL: Generated following transmission from the sender if the time of the return block does

not match, but the send block had the correct time. The command was already performed in this case, but the time

needs to be synchronized. If the code occurs again following synchronization of the time, this indicates a hacker or

bug.</DESCRIPTION>

 <VALUE>5</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERR_SYNCHRONIZE</NAME>

 <DESCRIPTION>BTPPL: Generated following transmission from the sender if the time of the return block does

not match and the command already had an incorrect time from the send block. This code is not used between the

controller and the control center.</DESCRIPTION>

 <VALUE>6</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERR_TYPE</NAME>

 <DESCRIPTION>BTPPL: Type, consisting of ODG MemberId and OType, is not

known/implemented.</DESCRIPTION>

 <VALUE>7</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERR_METHOD</NAME>

 <DESCRIPTION>BTPPL: Method number specified is not known/implemented.</DESCRIPTION>

 <VALUE>8</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERR_PATH_LEN</NAME>

 <DESCRIPTION>Unexpected path length</DESCRIPTION>

 <VALUE>16</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>ERR_PATH_VAL</NAME>

 <DESCRIPTION>No instance of specified path (value) found</DESCRIPTION>

 <VALUE>17</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>PARAM_INVALID</NAME>

 <DESCRIPTION>Incorrect parameter</DESCRIPTION>

 <VALUE>32</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>INTERVAL_INVALID</NAME>

 <DESCRIPTION>Invalid interval specified or interval already expired</DESCRIPTION>

 <VALUE>33</VALUE>

 </ENUMENTRY>

 <ENUMENTRY>

 <NAME>NOT_CONFIGURED</NAME>

 <DESCRIPTION>The addressed function is not available as it is not configured</DESCRIPTION>

 <VALUE>34</VALUE>

 </ENUMENTRY>

 </ENUMDOMAIN>

 <OBJTYPE>

 <NAME>objA</NAME>

 <DESCRIPTION>Example object A</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>500</OTYPE>

 <DECL>

 <NAME>Time</NAME>

 <DESCRIPTION>Example time</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>ZEITSTEMPEL_UTC</NAME>

OCIT-O_Protokoll_V2.0_A04 Page 58 of 70 OCIT Developer Group (ODG)

 </REFERENCE>

 </DECL>

 <DECL>

 <NAME>nr</NAME>

 <DESCRIPTION>Example Byte ID</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>OBJECT_ID_UBYTE</NAME>

 </REFERENCE>

 </DECL>

 <DECL>

 <NAME>name</NAME>

 <DESCRIPTION>Example name</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>OBJECT_NAME</NAME>

 </REFERENCE>

 </DECL>

 <PATHPART>

 <NAME>PathNr</NAME>

 <DESCRIPTION>Example path</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>OBJECT_ID_UBYTE</NAME>

 </REFERENCE>

 </PATHPART>

 <STDMETHOD>Get</STDMETHOD>

 <MAXMETHODNR>32</MAXMETHODNR>

 </OBJTYPE>

 <OBJTYPE>

 <NAME>objB</NAME>

 <DESCRIPTION>Example object B, derived from objA</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>501</OTYPE>

 <BASEDOMAIN>

 <MEMBER>0</MEMBER>

 <NAME>objA</NAME>

 </BASEDOMAIN>

 <DECL>

 <NAME>nameB</NAME>

 <DESCRIPTION>Example name B</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>OBJECT_NAME</NAME>

 </REFERENCE>

 </DECL>

 <STDMETHOD>Get</STDMETHOD>

 <MAXMETHODNR>64</MAXMETHODNR>

 </OBJTYPE>

 <OBJTYPE>

 <NAME>objC</NAME>

 <DESCRIPTION>Example object C</DESCRIPTION>

 <MEMBER>0</MEMBER>

 <OTYPE>502</OTYPE>

 <DECL>

 <NAME>name</NAME>

 <DESCRIPTION>Name</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>OBJECT_NAME</NAME>

 </REFERENCE>

 </DECL>

 <DECL>

 <NAME>objs</NAME>

 <DESCRIPTION>Example of object embedded as a polymorphic array</DESCRIPTION>

 <REFERENCE>

 <MEMBER>0</MEMBER>

 <NAME>objA</NAME>

 </REFERENCE>

 <MINCOUNT>0</MINCOUNT>

 <MAXCOUNT>4</MAXCOUNT>

 <REFPATH_DATA>3</REFPATH_DATA >

OCIT-O_Protokoll_V2.0_A04 Page 59 of 70 OCIT Developer Group (ODG)

 <EXTENSIBLE></EXTENSIBLE>

 </DECL>

 <STDMETHOD>Get</STDMETHOD>

 <MAXMETHODNR>32</MAXMETHODNR>

 </OBJTYPE>

</OCT>

</OCIT_TYPE_FILE>

OCIT-O_Protokoll_V2.0_A04 Page 60 of 70 OCIT Developer Group (ODG)

7.2 Entities

Entities in Device 5, for example:

Pfad ab Gerät 5/

0

1

3

ObjA

Zeit=0x38d0dfa9
nr=23

name=ObjA2

ObjA
Zeit=0x38d0dea4

nr=17

name=ObjA1

ObjB

Zeit=0x38d0dfb9
nr=37

name=ObjA3

nameB=ObjB1

ObjC

name=ObjC

German English

Pfad ab Gerät 5/ Path starting from Device 5/

Zeit Time

OCIT-O_Protokoll_V2.0_A04 Page 61 of 70 OCIT Developer Group (ODG)

7.3 Telegrams

Request telegram for ObjA/1.Get()with udp from central device 0.

Offset

UDP

Offset+0 Offset+1 Offset+2 Offset+3

0
HdrLen

11

 JobTime (Hi)

E6

JobTime (Lo)

83
000 00 r r 0

4
Job Time Cnt(Hi)

00

Job Time Cnt(Lo)

00

Member (Hi)

00

Member (Lo)

00

8
OTYPE (Hi)

01

OTYPE (Lo)

F4

Method (Hi)

00

Method (Lo)

00

12
ZNr (Hi)

00

ZNr (Lo)

00

FNr (Hi)

00

FNr (Lo)

05

16
Path

01

Fletcher (Hi)

F1

Fletcher (Lo)

77

To this the device responds with:

Offset

UDP

Offset+0 Offset+1 Offset+2 Offset+3

0
HdrLen

10

 JobTime (Hi)

E6

JobTime (Lo)

83
001 00 r r 0

4
Job Time Cnt(Hi)

00

Job Time Cnt(Lo)

00

Member (Hi)

00

Member (Lo)

00

8
OTYPE (Hi)

01

OTYPE (Lo)

F4

Method (Hi)

00

Method (Lo)

00

12
ZNr (Hi)

00

ZNr (Lo)

00

FNr (Hi)

00

FNr (Lo)

05

16
RetCode

0

RetCode

0
38 D0

20 DF A9 17 06

24 4F ´O´ 62 ´b´ 6A ´j´ 41 ´A´

28 32 ´2´ 00
Fletcher (Hi)

3E

Fletcher (Lo)

D4

OCIT-O_Protokoll_V2.0_A04 Page 62 of 70 OCIT Developer Group (ODG)

Request telegram for ObjC.Get()with udp from central device 0

Offset

UDP

Offset+0 Offset+1 Offset+2 Offset+3

0
HdrLen

10

 JobTime (Hi)

15

JobTime (Lo)

84
000 00 r r 0

4
Job Time Cnt(Hi)

00

Job Time Cnt(Lo)

00

Member (Hi)

00

Member (Lo)

00

8
OTYPE (Hi)

01

OTYPE (Lo)

F6

Method (Hi)

00

Method (Lo)

00

12
ZNr (Hi)

00

ZNr (Lo)

00

FNr (Hi)

00

FNr (Lo)

05

16
Fletcher (Hi)

A8

Fletcher (Lo)

A6

To this the device responds with:

Offset

UDP

Offset+0 Offset+1 Offset+2 Offset+3

0 HdrLen

10

 JobTime (Hi)

15

JobTime (Lo)

84
001 00 r r 0

4
Job Time Cnt(Hi)

00

Job Time Cnt(Lo)

00

Member (Hi)

00

Member (Lo)

00

8
OTYPE (Hi)

01

OTYPE (Lo)

F6

Method (Hi)

00

Method (Lo)

00

12
ZNr (Hi)

00

ZNr (Lo)

00

FNr (Hi)

00

FNr (Lo)

05

16
RetCode

0

RetCode

0

Name len

05

Name

4F ´O´

20 62 ´b´ 6A ´j´ 43 ´C´ 00

24
Number of objs

03

RefLen

5

ID.Member (Hi)

00

ID.Member (Lo)

00

28
ID.OTYPE (Hi)

01

ID.OTYPE (Lo)

F4

ID.Path

00

DataLen(Hi)

00

32
DataLen(Lo)

0C

Time

38
D0 DE

36 E4
Nr

11

Name len

06

Name

4F ´O´

40 62 ´b´ 6A ´j´ 41 ´A´ 31 ´1´

44 00
RefLen

5

ID.Member (Hi)

00

ID.Member (Lo)

00

48
ID.OTYPE (Hi)

01

ID.OTYPE (Lo)

F4

ID.Path

01

DataLen(Hi)

00

52
DataLen(Lo)

0C

Time

38
D0 DF

56 A9
Nr

17

Name Len

06

Name

4F ´O´

60 62 ´b´ 6A ´j´ 41 ´A´ 32 ´2´

OCIT-O_Protokoll_V2.0_A04 Page 63 of 70 OCIT Developer Group (ODG)

64 00
RefLen

5

ID.Member (Hi)

00

ID.Member (Lo)

00

68
ID.OTYPE (Hi)

01

ID.OTYPE (Lo)

F5

ID.Path

03

DataLen(Hi)

00

72
DataLen(Lo)

13

Time

38
D0 DF

76 B9
Nr

25

Name len

06

Name

4F ´O´

80 62 ´b´ 6A ´j´ 41 ´A´ 33 ´3´

84 00
Name len

06

Name

4F ´O´
62 ´b´

88 6A ´j´ 42 ´B´ 31 ´1´ 00

92
Fletcher (Hi)

FB

Fletcher (Lo)

BA

OCIT-O_Protokoll_V2.0_A04 Page 64 of 70 OCIT Developer Group (ODG)

8 Trace options

Note: New function. Observe version status of the field device.

For testing purposes, the detection of the btppl telegram correspondence is
designated "tracing". There are 2 options:

8.1 Trace file

Telegram correspondence is detected in the traffic signal controller or in a central
device unit and is saved as a "trace file". This option of complete detection of btppl
telegram correspondence in the trace file is mandatory for central devices and field
devices.

Modules for creating the trace files (btppl_trace.c and btppl_trace.h) are contained in
the OCIT-O library (src_btppl_type_040701.zip).

The trace files can be read with the OCIT-O typetool (typetool_WIN_....exe,
typetool_LINUX_....). It offers the following functions:

 Register and check the OCIT type (.dtd and .xml)

 HTML display of the OCIT type

 Convert trace file (binary btppl trace file) into readable text

 Client calls (btppl client), output of the request and respond

 Special function: Server function for EvList object (receipt of events)

8.2 External tracing

Telegram correspondence is detected and saved online through an external
detection device (trace tool) at the ports provided for it (standard trace ports) on the
traffic signal controller or a central device unit.

A trace tool typically offers the following functions:

 Detect the btppl telegram correspondence via the standard trace port (online
tracing)

 Online visualization of the trace

 Convert trace file to readable text (offline)

OCIT-O_Protokoll_V2.0_A04 Page 65 of 70 OCIT Developer Group (ODG)

8.2.1 Trace connection

The trace connection is generally to be implemented by the OCIT-I VD server
(central device) and traffic signal controller.

Standard trace port: Service name: ocit trace (port 5001, tcp).

Note: The physical quality of the connection is not defined.

Optionally, during socket setup a filter criterion ZNR=xxxxx and/or FNR=xxxxx can be
sent by the analysis tool but at least one LF (\n).

Examples:

ZNR=42;FNR=23\n
FNR=23\n
ZNR=42\n
\n

Socket timeout: The trace tool needs to have accepted these data within 5 seconds
or the connection can be closed.

Note: It is preferred to have trace tools connected to the central device or traffic
signal controller via their own, quick connections because data accumulated through
online tracing is twice as much. The limits of transmission capacity can be reached
through simultaneous use of the transmission profile 1 or 2 for device control and
tracing.

8.3 Binary trace file format

A binary btppl trace file consists of a sequence of trace data sets of the structure

described below. All data are written in "btppl" byte order (i.e. MSB first, LSB

last).

Name
Type Comment

trclen OCIT_UI4 Number of the bytes of the following trace data
set.

Sec OCIT_UI4 UTC second when trace data set was written.

usec OCIT_UI4 Microsecond of the UTC second when trace data
set was written.

ipadr btppl_ip_address Remote IP address.

port btppl_port remote port (NBO)

protocol OCIT_UI1 'u' for udp LoPrio, 't' for tcp LoPrio, 'U' for udp
HiPrio, 'T' for tcp HiPrio.

OCIT-O_Protokoll_V2.0_A04 Page 66 of 70 OCIT Developer Group (ODG)

Name
Type Comment

The values 'uUtT' describe data sets that arise
between client and server due to remote method
calls.

The value 'x' and 'X' describes data sets that arise
due to local method calls. These method calls are
triggered by the trace function of the BTPPL lib.

direction OCIT_UI1 '>' for received telegram, '<' for sent telegram.

Telegram HdrLen, Flags… Fletcher
see Section 5.1.1

How to transmit original telegram, start with btppl
header.

Data types in the OCIT-O library:

Data type Data type in

C

Maximum valid

range

Transmission type Comment

OCIT_UI1 Unsigned

char

0 – 255 transmitted as 1 byte

 (without alignment)

8 bits unsigned

OCIT_UI2 Unsigned

short

0 – 65,535 transmitted as 2 byte, high byte

first (without alignment)

16 bits unsigned

OCIT_UI4 Unsigned

long

0 –

4,294,967,295

transmitted as 4 byte, high byte

first (without alignment)

32 bits unsigned

OCIT_SI1 Signed char -128 – +127 transmitted as 1 byte

 (without alignment)

8 bits signed

OCIT_SI2 Signed short -32,768 – 32,767 transmitted as 2 byte, high byte

first (without alignment)

16 bits signed

OCIT_SI4 signed long -2,147,483,648 –

2,147,483,647

transmitted as 4 byte, high byte

first (without alignment)

32 bits signed

btppl_ip_address Unsigned

long

0 –

4,294,967,295

transmitted as 4 byte, high byte

first (without alignment)

32 bits unsigned

btppl_port Unsigned

short

0 – 65,535 transmitted as 2 byte, high byte

first (without alignment)

16 bits unsigned

8.4 Task structure

To be able to parse the trace data sets of List.GetSFSince, for example, the
information about the task structure available at the time of the transmission is
necessary. For this a trace entry of the task of the method GetListConfig() of
SystemObjectFieldDevice is entered (request and respond) at the beginning of each
trace file. The method is not explicitly called up by an external entity (e.g. trace tool),
a structure with the task information is entered into the trace file that corresponds to
the return of the GetListConfig() call. This local method call is not transmitted to the
central device or the traffic signal controller.

In the trace data sets the fields "ipadr" and "port" receive the value 0; the field
"protocol" receives the value 'x'.

OCIT-O_Protokoll_V2.0_A04 Page 67 of 70 OCIT Developer Group (ODG)

Scenario 1: Trace file

The NullValue (65535) must be entered into the call parameter ZnrFnrFilter for both
FNr and ZNr so that the configuration of all field devices is entered.

Call parameter ListNrs (empty array), this way the configuration of all modifiable lists
is entered.

Scenario 2: Trace connection

The filter criterion evaluated while the trace connection was being established must
be entered into the call parameter ZnrFnrFilter. For values not contained in the filter
criterion the NullValue (65535) is to be entered. This way the list configuration is only
entered for devices for which trace datasets are also to be transmitted.

Call parameter ListNrs (empty array), this way the configuration of all modifiable lists
is entered.

When analyzing the socket this task information is sent once during socket setup.
The stream via the trace port and the trace file are identical with regard to their
content and can be converted one into another.Glossary

The contents of this section includes technical terms that refer to the context of this
document. Terms present in all OCIT documents can be found in the document
OCIT-O System.

AP values
Umbrella term in OCIT-O for selected internal variables of the
traffic signal controllers that are dynamically calculated by user
programs or (if settable) can be dynamically modified by upper-
level central applications for controlling programs.

Archive
Selected data of the traffic controller that serve the documentation
of operating conditions or storage of dynamic values are collected
in archives. The storage format (sharing format) can be different
from the format of the individual data in order to compress data.

bps
bits per second = bit/s

BTPPL
Basis Transport Packet Protocol Layer of the OCIT-O interface

Central and local
system access

OCIT outstation interface of the central level or on the field device
at which tools for supply or service are connected.

Central device
The term central device is used as a short form in the OCIT-O
documents for a traffic signal central device with traffic signal
controllers attached. The traffic signal central device can be a part
of a device for controlling and monitoring road traffic composed of
multiple components. The components of this central level can be
found at different locations (distributed system).

OCIT-O_Protokoll_V2.0_A04 Page 68 of 70 OCIT Developer Group (ODG)

Central level
A device for controlling and monitoring road traffic composed of
one or more components. The components of the central level can
be found at different locations (-> distributed system). From the
perspective of the OCIT process the centralized level includes at
least one traffic signal central device and the traffic signal systems
attached to it with their traffic signal controllers. The subsystems
such as traffic engineer's workstation, supply data server, system
for quality assurance, adaptive network control and others, if
applicable, are extensions.

DTD
Document Type Definition
A set of rules that is used to represent documents of a certain
type. DTD is a part of the XML specifications.

Dynamic values
Umbrella term for selected internal variables of the traffic signal
controller that are usually affected by network control processes.

Error message
In contrast to malfunctions(malfunction messages) errors are not
caused by a technical defect but rather faults in the supply (e.g. in
the intergreen time) or in the use (e.g. non-executable command)
of the field device.

Event
Certain occurrences in the traffic signal controller trigger a
notification to the central device. This notification is designated as
an event. Events are triggered, for example, when archives are full
or messages should be requested by the central device.

IP
Internet Protocol (Version 4, if not otherwise noted)

ISO / OSI
ISO/OSI Basic Reference Model (DIN-ISO 7498 v.1982, X.200 v.
1994)
ISO: International Organization for Standardization
OSI: Open Systems Interconnection

Manufacturer-specific The relevant manufacturer determines the exact classification
scheme or functionality. Generally, no project-specific definitions
are possible or useful here because they would pose a risk to the
pervasiveness and resiliency of the manufacturer-specific solution.

Measurement values
Measurement values are measurement results of the sensor
system and other data detected by the controller that provide
information about the traffic occurrences in the form of an original
value or pre-processed.

Messages
Messages designate events and name origins, time of occurrence,
etc. Messages are saved in archives (standard message archive).
The central device does not receive the messages directly, rather
only a notification that the messages are available (Event), in
response to which the central device requests and receives the
messages from the traffic signal controller.

PPP
Point to Point Protocol

Project-specific The relevant specifications generally allows project-specific
classification schemes or functions within the limits established by
the system present.

OCIT-O_Protokoll_V2.0_A04 Page 69 of 70 OCIT Developer Group (ODG)

Return code
If a feature that is not available in the traffic signal controller is
called up by the central device, a return code that the central
device can evaluate is generated and transmitted.

RFC
Request for comment (i.e. work documents, protocol specifications
or comments on network topics)

SHA-1
Secure Hash Algorithm

TCP
Transmission Control Protocol
One of the internet protocols. Connection-oriented transport
protocol in layer 4 of the ISO/OSI reference model.

Traffic-related
processes (also
traffic-actuated logic,
TA logic, TA, TA
process)

Software in the traffic signal controller that modifies signaling
based on specified algorithms and traffic measurement values in
accordance with the current traffic situation. The algorithms in the
logic can be modified through parameters (a part of the supply
data). Calculated results (variables) can be read or set as AP
values at OCIT outstations.

TSC
Traffic signal controller

UDP
User Datagram Protocol
One of the internet protocols. Connectionless protocol in layer 4 of
the ISO/OSI reference model.

V.xx
Standards of the ITU-T (International Telecommunications Union),
previously CCITT

XML
Extensible Markup Language,
Meta-language for defining document types. XML supplies the
rules that are applied when defining document types.

 OCIT-O_Protokoll_V2.0_A04

 Copyright  2012 ODG

